COPYRIGHT

This Analysis and the ideas, designs, concepts and data contained herein are the exclusive intellectual property of A&F Engineering Co., LLC and are not to be used or reproduced in whole or in part, without the written consent of A&F Engineering Co., LLC.

CERTIFICATION

I certify that this TRAFFIC IMPACT FEE ANALYSIS has been prepared by me and under my immediate supervision and that I have experience and training in the field of traffic and transportation engineering.

A&F ENGINEERING Co., LLC

R. Matt Brown, P.E.
Indiana Registration 10200056

James O. Ensley, EI
TABLE OF CONTENTS

CERTIFICATION ... I

FIGURE 1: ZONE IMPROVEMENT PLAN .. II

FIGURE 2: VACANT LAND PARCELS ... III

TABLE OF CONTENTS ... IV

INTRODUCTION ... 1

PURPOSE ... 1

STUDY AREA ... 1

SCOPE OF WORK .. 2

TRAFFIC DATA ... 3

EXISTING INTERSECTION INVENTORY .. 4

EXISTING ROADWAY SEGMENT INVENTORY ... 4

VACANT LAND PARCELS - PROPOSED USES ... 4

SITE GENERATED TRIPS .. 5

PASS-BY TRIPS ... 6

INTERNAL TRIPS ... 6

ASSIGNMENT & DISTRIBUTION OF THE GENERATED TRIPS .. 6

PROJECTED 10-YEAR TRAFFIC VOLUMES ... 7

CAPACITY ANALYSES ... 7

DESCRIPTION OF LEVEL OF SERVICE - INTERSECTIONS ... 8

DESCRIPTION OF LEVEL OF SERVICE - ROADWAYS ... 9

ACCEPTABLE LEVEL OF SERVICE STANDARDS ... 10

RECOMMENDED IMPROVEMENT CRITERIA ... 10

PREVIOUS TRANSPORTATION STUDIES .. 10

TOWN FUNDING SOURCES .. 11

ESTIMATED CONSTRUCTION COSTS .. 13

TABLE 1 - ESTIMATED INTERSECTION CONSTRUCTION COSTS .. 14

TABLE 2 - ESTIMATED ROADWAY CONSTRUCTION COSTS .. 15

TABLE 2 CONTINUED - ESTIMATED ROADWAY CONSTRUCTION COSTS 16

FIGURE 3: ROADWAY SEGMENT AND INTERSECTION IMPROVEMENT PLAN 17

TOTAL COSTS ... 18

TABLE 3 - TOTAL COSTS ... 18

PARCEL 24-HOUR TRIP DATA .. 18

TABLE 4: SUMMARY OF 24-HOUR TRIPS .. 19

IMPACT FEE CALCULATION .. 20

TABLE 5 - CALCULATION OF IMPACT FEE ... 20

IV
Annual Impact Fee Evaluation .. 20
Examples of Typical Impact Fees Collected .. 20
 Table 6 – Example of Typical Fees Collected per Single Family Home .. 21
 Table 7 – Examples of Typical Fees Collected for Other Land Uses .. 22
Rational Nexus Theory .. 23
Summary Tables for Intersections .. 24
 Intersection #1 – 96th Street & Zionsville Road .. 26
 Intersection #2 – 96th Street & Cooper Road ... 27
 Intersection #3 – 96th Street & CR 775 E/Kiszel Road .. 28
 Intersection #4 – 106th Street & Bennett Parkway ... 29
 Intersection #5 – Hunt Club Road & Ford Road .. 30
 Intersection #6 – Hunt Club Road & Cooper Road .. 31
 Intersection #7 – Hunt Club Road & CR 775 E/Kiszel Road ... 32
 Intersection #8 – 106th Street & Zionsville Road ... 33
 Intersection #9 – Continental Drive/Salt Ave & Ford Road ... 34
 Intersection #10 – Sycamore Street & Zionsville Road/Main Street .. 35
 Intersection #11 – Oak Street & First Street .. 36
 Intersection #12 – Oak Street & Sixth Street ... 37
 Intersection #13 – Oak Street & Ford Road .. 38
 Intersection #14 – Oak Street & Sheets Road/CR 950 E ... 39
 Intersection #15 – Oak Street & Cooper Road .. 40
 Intersection #16 – Oak Street & CR 800 E .. 41
 Intersection #17 – Sycamore Street & Michigan Road ... 42
 Intersection #18 – Bloor Lane & Mulberry Street ... 43
 Intersection #19 – Bloor Lane & Ford Road .. 44
 Intersection #20 – CR 600 S & Ford Road ... 45
 Intersection #21 – Cruse Road & CR 950 E .. 46
 Intersection #22 – Mulberry Street & Turkey Foot Road .. 47
 Intersection #23 – CR 550 S & Michigan Road .. 48
 Intersection #24 – CR 550 S & CR 1100 E ... 49
 Intersection #25 – CR 550 S & CR 875 E ... 50
 Intersection #26 – CR 550 S & CR 800 E ... 51
 Intersection #27 – CR 550 S & CR 700 E ... 52
 Intersection #28 – Mulberry Street & Ford Road ... 53
 Intersection #29 – Whitestown Road & CR 950 E ... 54
 Intersection #30 – Whitestown Road & CR 875 E ... 55
 Intersection #31 – 126th Street & Michigan Road ... 56
SUMMARY TABLES FOR ROADWAY SEGMENTS ... 99

96TH STREET .. 101
CR 700 S / HUNT CLUB ROAD .. 103
106TH STREET ... 104
OAK STREET / SYCAMORE STREET .. 105
116TH STREET ... 110
CRUSE ROAD / CR 600 S ... 111
CR 550 S .. 112
MULBERRY STREET .. 113
CR 550 S / GREENFIELD ROAD .. 114
WHITESTOWN ROAD ... 115
126TH STREET .. 117
WILLow ROAD / 131ST STREET ... 117
CR 400 S .. 118
CR 375 S .. 119
HOLLIDAY ROAD .. 120
CR 300 S .. 120
CR 200 S .. 123
CR 100 S .. 126
CR 50 S ... 127
CR 100 N .. 128
CR 150 N .. 132
CR 200 N .. 132
CR 600 E .. 135
CR 700 E .. 136
CR 750 E .. 138
CR 775 E / KISSEL ROAD ... 139
CR 800 E .. 140
CR 825 E .. 144
CR 850 E / COOPER ROAD ... 145
CR 875 E .. 146
CR 900 E .. 148

VII
INTRODUCTION

The Town of Zionsville has undertaken a project to determine the amount of Traffic Impact Fees that can be assessed against projected future developments that will be constructed within the Town over the next 10 years. This analysis will determine the future impact that the developments will have on Zionsville’s transportation system. From the analysis, recommendations for the intersections and roadway segments in the study area will be made to accommodate the existing and future traffic. Impact fees will then be determined based on the incremental improvements from existing recommendations to future recommendations.

PURPOSE

The purpose of this project is as follows:

1. **Existing Conditions** - Review the major street network as it presently exists within the study area. If necessary, intersection and roadway improvements will be recommended based on the existing traffic volumes. Estimated construction costs will be determined for the corresponding intersection and roadway improvements.

2. **Projected 10-Year Conditions** - Estimate the trips that could be generated by vacant parcels of land over the next 10 years. These trips will then be added to the existing traffic volumes to project the 10-year traffic volumes that will use the Town’s roadway system. Intersection and roadway improvements will then be recommended based on these future traffic volumes. Estimated construction costs will be determined for the corresponding intersection and roadway improvements.

3. **Impact Fee** - Calculate an impact fee based on the estimated construction costs for the incremental improvements from existing conditions to the projected 10-year conditions, the cost of performing the impact fee study and the projected 24-hour trips that will be generated by the vacant land parcels.

STUDY AREA

The study area for this analysis has been determined based on guidelines by the Town of Zionsville’s Planning Department and Street Department. **Figure 1**, which is titled “Study Area Roadway Network” and is located at the front of this report, shows the intersections and roadway segments that are included in the study area. **Figure 2** shows the location of the vacant land parcels in reference to the study area roadway network.
Scope of Work

The scope of work for this analysis includes the following:

Existing Conditions

1. Determine the existing traffic volumes at all intersections and along all roadway segments within the study area.
2. Inventory all existing study area intersections to determine traffic control and intersection geometrics.
3. Inventory all existing study area roadways segments to determine number of lanes, lane widths, shoulder widths and speed limits.
4. Perform manual turning movement traffic counts at the existing study area intersections.
5. Perform 48-hour machine traffic counts along the existing study area roadway segments.
6. Prepare a capacity analysis for each intersection and each roadway segment using existing geometrics, existing traffic controls and existing traffic volumes. The capacity analysis will provide levels of service for each of the intersections and roadway segments which can be compared to the acceptable level of service standards.
7. Make recommendations to improve the intersections and roadway segments that are below acceptable level of service.
8. Estimate construction costs based on the corresponding intersection and roadway improvements needed to accommodate the existing traffic volumes.

Projected 10-Year Conditions

1. Identify all of the vacant and partially vacant parcels of land within the study area that are likely to be developed over the next 10 years and confirm the potential land uses for those parcels.
2. Estimate the number of AM peak hour, PM peak hour, and 24 Hour weekday traffic volumes that will be generated by the potential use of each of these parcels.
3. Assign and distribute the generated trips for the peak hour periods throughout the street system.
4. Determine the total peak hour generated trips from all of the vacant parcels at each intersection and along each roadway segment of the study area roadway network.
5. Add the generated trips to the existing traffic volumes to project the 10-year traffic volumes.
6. Prepare a capacity analysis for each intersection and each roadway segment using the projected 10-year traffic volumes and any intersection/roadway improvements needed for the existing traffic volumes. The capacity analysis will provide levels of service for the roadway segments and intersections which can be compared to the acceptable level of service standards.
7. Make recommendations to improve the intersections and roadway segments that are below acceptable level of service.
8. Estimate construction costs based on the corresponding roadway and intersection improvements needed to accommodate the projected 10-year traffic volumes.
Impact Fee

1. Umbaugh will identify annual budget and long term borrowing sources that will be used to fund future capital projects that add capacity to the road system.

2. Determine the construction costs of the roadway segments and intersections based on the incremental improvements from existing conditions to the projected 10-year conditions.

3. Add the cost of performing the impact fee study to the incremental construction cost to obtain the total impact fee cost.

4. Divide the total impact fee cost by the total 24-hour trips to calculate the impact fee per trip.

5. Prepare a report summarizing all data collected, the generated trips from the vacant land parcels, the results of the capacity analyses, intersection/roadway improvement recommendations, the corresponding construction estimates and the resulting impact fee per trip.

Traffic Data

Manual turning movement traffic volume counts were collected at each of the existing study intersections in 2011 & 2012 by A & F Engineering. Traffic volume counts were collected between the hours of 6:00 AM to 9:00 AM and 4:00 PM to 7:00 PM. Intersections that are in close proximity to schools were also counted between 6:30 AM to 8:30 AM and 2:00 PM to 4:00 PM. The “Intersection Traffic Movements” figures in Exhibit 2 summarize the existing traffic volumes for the peak hours obtained from the manual counts. The raw data sheets for the intersection traffic counts are located in Peak Hour Intersection Traffic Volume Counts Report.

Directional, machine traffic volume counts were conducted on all major existing roadway segments in the study area by A & F Engineering Co., LLC in 2011 & 2012. Traffic volume counts were conducted for a period of approximately forty-eight hours and are averaged and summarized on an hourly basis for a twenty-four hour period. The total traffic over the averaged twenty-four hour period is referred to as the “Average Daily Traffic” (ADT). The “Roadway Segment Summary” figures in Exhibit 3 summarize the existing traffic volumes for the peak hours and the ADT obtained from the machine traffic counts. The raw data sheets for the roadway segment traffic counts are located in the 48-Hour Roadway Segment Traffic Counts Report.
Existing Intersection Inventory
Each existing intersection within the study area was identified by the following characteristics:

- Traffic Controls
- Intersection Geometrics

These data have been graphically represented on the “Existing Intersection Conditions” figures in Exhibit 1.

Existing Roadway Segment Inventory
Each street within the study area is identified by dividing the roadway into segments to be analyzed. In general, each segment was chosen based on a change in traffic conditions or roadway characteristics. The characteristics that were included in the roadway segment analyses are:

- Number of Lanes
- Segment Length
- Speed Limit
- Percent No-Passing
- Presence of Median or Passing Lanes
- Peak Hour factor (PHF)
- Average Daily Traffic (ADT)
- % Heavy Vehicles
- Directional Split of traffic

These data, along with the results from the roadway segment capacity analyses, are shown on the “Roadway Segment Summary” figures in Exhibit 3.

Vacant Land Parcels - Proposed Uses
The vacant parcels of land to be included in this analysis are illustrated on Figure 2. Direction from the Street & Stormwater Department and the Planning Department was used to identify these parcels and to develop land use and density determinations for each parcel of vacant land.
SITE GENERATED TRIPS

An estimate of traffic anticipated to be generated by each of the vacant parcels is a function of the size and character of the land use. *ITE Trip Generation Manual*¹ report was used to calculate the total number of trips expected to be generated by each land use for the adjacent street AM peak hour, PM peak hour and twenty-four hour weekday period. This report is a compilation of trip data for various land uses as collected by transportation professionals throughout the United States in order to establish the average number of trips generated by those land uses. Based on the information provided by the Town’s Planning Department as well as data taken from *ITE Trip Generation Manual*, the classifications and descriptions for each of the vacant parcels to this study are as follows:

Single Family: Single family detached homes that are on individual lots. A typical example of this land use is a residential structure in a modern subdivision.

Multi-Family: A multi-family residence is defined as a dwelling unit that is located within the same building as at least three other dwelling units. Examples of this category are all types of apartment buildings, senior living facilities, and townhomes.

Research Technology: Typical uses within this classification include research facilities, testing laboratories and administrative facilities that are generally compatible in physical appearance and service requirements to office uses.

Office: An office building is a location where affairs of businesses are conducted. The office land uses includes general office, regional office, office parks and office flex space.

Retail: Retail is defined as all commercial establishments or service institutions that may be an integrated group or free standing. Included in this classification are shopping centers, restaurants, banks/savings & loans, car sales, car accessory sales, supermarkets, convenience markets, service stations, furniture stores, clothing stores, discounts stores, hardware stores or any other specialty store.

Medical Office: A medical office building is a facility that gives diagnoses and outpatient care on a routine basis. It is usually operated by one or more private physicians.

Business Park: Business parks are one- or two-story buildings with tenant space for various uses. Spaces may include offices, retail, restaurants, wholesale stores, warehouses, and recreational areas.

PASS-BY TRIPS
The vacant parcels that include retail uses will attract trips from the existing streams of traffic around the site. This traffic is commonly referred to as "pass-by-traffic/captured traffic". ITE Trip Generation Manual\(^2\) provides procedures and data that can be used to estimate the pass-by traffic/captured traffic. The data used to reduce the traffic to account for the number of pass-by trips on the public roadway are a function of the size of the retail development. A percentage reduction was considered for each retail parcel on an individual basis using the pass-by trip equation in the ITE Trip Generation Manual.

INTERNAL TRIPS
In multi-land use developments, there will be trips to individual land uses that are generated from within the development. These internal trips will be second and third stops, which never use the public street system in most cases. Internal trips were considered negligible in order to obtain a worst case traffic scenario. However for vacant parcels that included a significant amount of mixed-use developments, the methods outlined in the ITE Trip Generation Manual were used to account for Internal Trips.

ASSIGNMENT & DISTRIBUTION OF THE GENERATED TRIPS
To determine the volume of traffic that will be added to the impact study street system, the generated traffic must be assigned and distributed by direction to the public roadway at its intersection with the access points, and then to each of the intersections throughout the study area. For each of the vacant parcels within the study area, the assignment and distribution was based on the existing traffic patterns, the location of patrons in relation to the individual parcels and the proposed street system within the study area. The assignment and distribution of the generated traffic for each parcel was expedited by using the Paramics\(^3\) software. This software is a complex traffic modeling program that allows the user to define intersection and roadway geometrics, traffic volumes, land uses and a variety of other factors that contribute to traffic growth and travel patterns. The model then uses these inputs to develop real-time dynamic assignment and distribution of traffic over the roadway network.

\(^3\) *Paramics*, Quadstone, 2012.
Projected 10-Year Traffic Volumes

The generated traffic volumes from the assumed developed parcel were totaled for both the AM peak hour and the PM peak hour at each of the study intersections and roadway segments. These generated volumes were then added to the existing traffic volumes at each intersection and roadway segment to project the 10-year traffic volumes. The projected 10-year traffic volumes are summarized for the AM peak hour and PM peak hour for each intersection on the “Intersection Traffic Movements” figures in Exhibit 2 and for each roadway segment on the “Roadway Segment Summary” figures in Exhibit 3.

Capacity Analyses

The "efficiency" of an intersection or roadway segment is based on its ability to accommodate the traffic volumes. Efficiency is defined by the Level of Service (LOS) which ranges from LOS “A” to LOS “F” with “A” representing the highest efficiency and “F” representing the lowest efficiency. The LOS is determined by a series of calculations commonly called a "capacity analysis". Input data into a capacity analysis include traffic volumes, intersection geometry or roadway cross-section, number and use of lanes and, in the case of signalized intersections, traffic signal timing. The capacity analyses were prepared based on methods set forth by the *Highway Capacity Manual (HCM)*⁴. To expedite the calculation process Synchro/SimTraffic⁵ software was used to determine the LOS for the study intersections while the *HIGHPLAN*⁶ software was used to determine the LOS for the study roadway segments.

⁵ *Synchro/SimTraffic 8.0*, Trafficware, 2011.

DESCRIPTION OF LEVEL OF SERVICE - INTERSECTIONS

The Level of Service (LOS) for an intersection is based on the typical delay (in seconds) that a vehicle would experience at the intersection. The following data obtained from the *Highway Capacity Manual (HCM)* describes delays related to the levels of service for signalized intersections:

Level of Service A - describes operations with a very low delay, less than or equal to 10.0 seconds per vehicle. This occurs when progression is extremely favorable, and most vehicles arrive during the green phase. Most vehicles do not stop at all.

Level of Service B - describes operations with delay in the range of 10.1 to 20.0 seconds per vehicle. This generally occurs with good progression. More vehicles stop than LOS A, causing higher levels of average delay.

Level of Service C - describes operation with delay in the range of 20.1 seconds to 35.0 seconds per vehicle. These higher delays may result from failed progression. The number of vehicles stopping is significant at this level, although many still pass through the intersection without stopping.

Level of Service D - describes operations with delay in the range of 35.1 to 55.0 seconds per vehicle. At level of service D, the influence of congestion becomes more noticeable. Longer delays may result from some combinations of unfavorable progression. Many vehicles stop, and the proportion of vehicles not stopping declines.

Level of Service E - describes operations with delay in the range of 55.1 to 80.0 seconds per vehicle. These high delay values generally indicate poor progression and long cycle lengths.

Level of Service F - describes operations with delay in excess of 80.0 seconds per vehicle. This condition often occurs with oversaturation, i.e., when arrival flow rates exceed the capacity of the intersection. Poor progression and long cycle lengths may also be major contributing causes to such delay levels.

The following data obtained from the *Highway Capacity Manual (HCM)* lists the delays related to the levels of service for unsignalized intersections:

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Control Delay (seconds/vehicle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Less than or equal to 10</td>
</tr>
<tr>
<td>B</td>
<td>Between 10.1 and 15</td>
</tr>
<tr>
<td>C</td>
<td>Between 15.1 and 25</td>
</tr>
<tr>
<td>D</td>
<td>Between 25.1 and 35</td>
</tr>
<tr>
<td>E</td>
<td>Between 35.1 and 50</td>
</tr>
<tr>
<td>F</td>
<td>greater than 50</td>
</tr>
</tbody>
</table>
DESCRIPTION OF LEVEL OF SERVICE - ROADWAYS

HIGHPLAN computer software was used to determine the Level of Service (LOS) for the two-lane roadway segments (one travel lane in each direction) and multilane roadway segments (more than one travel lane in each direction) in this study. In the *HIGHPLAN* software, the LOS for the two-lane roadway segments for developed areas is based on the percentage free flow speed (the percentage of speed traveled in relation to the posted speed limit) that can be obtained over the segment. As for multilane roadway segments, the LOS is based on the density (passenger cars per mile per lane) of the segment.

HIGHPLAN is FDOT’s (Florida Department of Transportation) planning and preliminary engineering software for two-lane and multilane uninterrupted flow highways. *HIGHPLAN* utilizes the following roadway variables in the determination of the LOS for two-lane and multilane roadway segments:

- Number of Lanes
- Segment Length
- Speed Limit
- Percent No-Passing
- Presence of Median or Passing Lanes
- Peak Hour factor (PHF)
- Average Daily Traffic (ADT)
- % Heavy Vehicles
- Directional Split of traffic

The following tables show the criteria used by *HIGHPLAN* in determining the level of service for two-lane roadway segments and multilane roadway segments.

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Percentage of Free Flow Speed (%)</th>
<th>Minimum Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>≥ 92</td>
<td>45</td>
</tr>
<tr>
<td>B</td>
<td>83-91.9</td>
<td>35</td>
</tr>
<tr>
<td>C</td>
<td>75-82.9</td>
<td>35</td>
</tr>
<tr>
<td>D</td>
<td>67-74.9</td>
<td>35</td>
</tr>
<tr>
<td>E</td>
<td>≤ 67 or v/c ≥ 1.0</td>
<td>35</td>
</tr>
<tr>
<td>F</td>
<td>v/c ≥ 1.0</td>
<td>35</td>
</tr>
</tbody>
</table>
Acceptable Level of Service Standards

The Town of Zionsville’s impact fee advisory board established the minimum acceptable level of service (LOS) standards that were to be used when performing the capacity analyses for the study intersections and roadway segments. Level of service “C” has been selected for this study as the minimum acceptable LOS for intersections while level of service “D” has been selected as the minimum acceptable LOS for roadway segments. These minimum acceptable level-of-service standards are consistent with the standards previously adopted within the original Traffic Impact Fee ordinance by the Town Council in February 2007.

Recommended Improvement Criteria

Improvements were recommended for both the existing traffic volumes and the projected 10-year traffic volumes so that each study intersection/segment will meet the minimum acceptable levels of service. The recommended improvements of this report are subject only to include those regarding the capacity of each study intersection/segment. Impact Fees are calculated based on the improvements needed to enhance the capacity of each intersection/segment, and the recommendations found in this report are based on improving said capacity. Recommended improvements can include: the addition of travel lanes, intersection turn lanes, and changes in intersection control. Improvements required based on safety or other non-capacity related issues were not addressed in the recommendations of this report.

Previous Transportation Studies

The Zionsville Transposition Plan was reviewed so that various future roadway projects could be included within the Traffic Impact Fee Model. The Transportation Plan is a 25 year plan versus the 10 years covered within the Traffic Impact Fee Report. Thus, there are many future projects that are identified within the Transportation Plan that are not included within the Traffic Impact Fee because the projects are not necessary in the short term, are not yet identified on the Thoroughfare Plan or are non-capacity added projects. The following is a list of major projects called out within the

LOS Thresholds for Multilane Roadway Segments

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Density (pc/mi/ln)</th>
<th>Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>≤ 11</td>
<td>ALL</td>
</tr>
<tr>
<td>B</td>
<td>11.1-18</td>
<td>ALL</td>
</tr>
<tr>
<td>C</td>
<td>18.1-26</td>
<td>ALL</td>
</tr>
<tr>
<td>D</td>
<td>26.1-35</td>
<td>ALL</td>
</tr>
<tr>
<td>E</td>
<td>35.1-45</td>
<td>45-60</td>
</tr>
<tr>
<td>F</td>
<td>> 45</td>
<td>45-60</td>
</tr>
</tbody>
</table>
Transportation Plan that have not been included in the Traffic Impact Fee report for the before mentioned reasons. However, future Traffic Impact Fee Report updates could include these projects as conditions change.

- New I-865 Interchange at Cooper Road
- CR 375 S (between Pleasant View Road and O’Neal Road) extension to US 421
- Templin Road/CR 550 S extension westward to connect to Mulberry Street
- Widening of 96th Street to 4-lanes between Zionsville Road and County Line Road
- Realignment of CR 230 S connecting CR 875 E to CR 900 E between CR 300 S and CR 200 S
- Realignment of CR 950 E between CR 375 S and CR 400 S
- Construction of a new road from CR 400 S at CR 650 E northeastward to CR 300 S at CR 750 E

TOWN FUNDING SOURCES

The following information was provided by H.J. Umbaugh and Associates.

The Town of Zionsville has traditionally funded its roads from two primary sources, the annual budget and long term borrowing through the issuance of municipal bonds. Additionally, since 2007 a road impact fee has been collected to fund capital projects that add capacity to the roads system. The calculation of the credit for outstanding debt and other traditional funding mechanisms only accounts for those monies used to finance projects that have added roadway capacity in the past.

Over the past six years, the Town (or entities associated with the Town) has issued two debt obligations for the purpose of funding road projects that added overall roadway capacity. In 2008, the Zionsville Redevelopment Commission issued $5,500,000 of Redevelopment Authority Economic Development Lease Rental Bonds of 2008 (the “2008 Lease Bonds”) for the purpose of funding reconstruction of 1.25 miles of 106th Street and a new 0.27 mile connector road along 106th Street. In 2012, the Zionsville Redevelopment Commission issued $3,400,000 of Economic Development Lease Rental Revenue Bonds, Series 2012 (the “2012 Lease Bonds”) for the purpose of funding the extension of Bennett Parkway.

The 2008 Lease Bonds have a final maturity of February 1, 2028 and have $4,920,000 of outstanding principal payments. The 2012 Lease Bonds have a final maturity of February 1, 2025.
and have $3,400,000 of outstanding principal payments. A portion of the outstanding principal amount is credited to the estimated construction costs for the Bennett Parkway extension determined in the impact study that are the responsibility of the Town.

In 2003, the Zionsville Redevelopment Commission issued $1,400,000 of Economic Development Lease Rental Bonds of 2003 (the “2003 Lease Bonds”) to fund the re-bricking of Main Street in downtown Zionsville. In 2005 the Town issued $1,960,000 of General Obligation Bonds of 2005 (the “2005 Bonds”) to finance various road improvements to Willow Road. Currently, the 2003 Lease Bonds have $815,000 of outstanding principal and the 2005 Bonds have $1,235,000 of outstanding principal.

The projects funded with the 2003 Lease Bonds and the 2005 Bonds did not include any added capacity to the roads system, but were undertaken as maintenance to improve the existing road infrastructure. Therefore, these obligations were not included in the calculation of the impact fee, as the fee monies are not used for maintenance/improvement projects, but for capital projects that increase the road system capacity. These obligations are included in the report only as a reference to other roads projects that have been undertaken recently.

Additionally, the Town has traditionally received minimal third party funding for its roads projects. Therefore, there has been no inclusion of such information in this report. Located in Appendix A is a report that outlines financial information pertinent to the development of the impact fee. Page 2 summarizes the outstanding debt obligations for the Town attributed to road projects. Page 3 summarizes the historical Town budgets for road projects along with a calculation of the average annual expenditures. Historically, the Town has not used budgeted funds for road expansion projects, reserving these funds for repair and improvements to the existing road infrastructure. Since the impact fee will not be used for repairs and improvements to existing infrastructure, these budgeted funds are not credited to the fee. Page 4 shows the road impact fee receipts over the past six years. While no road impact fee dollars have been spent to date, plans do exist to spend the funds that have been collected.
Estimated Construction Costs

Table 1 is a summary of the estimated construction costs that will be required to bring the intersections up to design standards to accommodate either the existing traffic volumes or the projected 10-year traffic volumes. The table shows the estimated construction costs associated with the improvements needed to mitigate the existing traffic volumes (Today’s Costs), the estimated construction costs associated with the improvements needed to mitigate the projected 10-year traffic volumes (10-Year Cost), and the estimated difference in construction cost for all improvements (Applicable Impact Fee Cost). All construction estimates are based on year 2013 costs.

Table 2 is a summary of the estimated construction costs that will be required to bring the roadways up to design standards to accommodate either the existing traffic volumes or the projected 10-year traffic volumes. Recommended pavement width design practices are set forth in AASHTO’s *A Policy on Geometric Design of Highways and Streets*. The table shows the estimated construction costs associated with the improvements needed to mitigate the existing traffic volumes or to bring the existing pavement to minimum width (Today’s Costs), the estimated construction costs associated with the improvements needed to mitigate the projected 10-year traffic volumes (10-Year Cost), and the estimated difference in construction cost for all improvements (Applicable Impact Fee Cost). All roadway segment construction cost estimates are based on the Town’s typical roadway sections and are year 2013 costs.

Proposed intersections and roadways will serve both existing traffic from the current users of Zionsville’s roadway network as well as additional future traffic generated by the development of vacant land. Therefore, any construction cost associated with a proposed intersection or roadway is due to both the existing traffic (Today’s Cost) and the additional future traffic (10-Year Cost). The cost associated with these new facilities has been divided equally between “Today’s Cost” and “10-Year Cost”.

Table 1 - Estimated Intersection Construction Costs

<table>
<thead>
<tr>
<th>#</th>
<th>Intersection</th>
<th>Today’s Cost</th>
<th>10-Year Cost</th>
<th>Applicable Impact Fee Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>106th Street & Bennett Parkway</td>
<td>$0</td>
<td>$1,300,000</td>
<td>$1,300,000</td>
</tr>
<tr>
<td>8</td>
<td>106th Street & Zionsville Road</td>
<td>$160,000</td>
<td>$160,000</td>
<td>$0</td>
</tr>
<tr>
<td>10</td>
<td>Sycamore Street & Zionsville Road/Main Street</td>
<td>$0</td>
<td>$200,000</td>
<td>$200,000</td>
</tr>
<tr>
<td>11</td>
<td>Oak Street & First Street</td>
<td>$260,000</td>
<td>$260,000</td>
<td>$0</td>
</tr>
<tr>
<td>13</td>
<td>Oak Street & CR 1000 E</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>15</td>
<td>Oak Street & Cooper Road</td>
<td>$0</td>
<td>$1,600,000</td>
<td>$1,600,000</td>
</tr>
<tr>
<td>16</td>
<td>Oak Street & CR 800 E</td>
<td>$800,000</td>
<td>$1,600,000</td>
<td>$800,000</td>
</tr>
<tr>
<td>17</td>
<td>Sycamore Street & US 421 / Michigan Road</td>
<td>$0</td>
<td>$50,000</td>
<td>$50,000</td>
</tr>
<tr>
<td>18</td>
<td>Bloor Lane & Mulberry Street</td>
<td>$0</td>
<td>$100,000</td>
<td>$100,000</td>
</tr>
<tr>
<td>23</td>
<td>CR 550 S / Templin Road & US 421 / Michigan Road</td>
<td>$80,000</td>
<td>$80,000</td>
<td>$0</td>
</tr>
<tr>
<td>28</td>
<td>Whitestown Road & Ford Road</td>
<td>$0</td>
<td>$1,600,000</td>
<td>$1,600,000</td>
</tr>
<tr>
<td>29</td>
<td>CR 500 S / Whitestown Road & CR 950 E</td>
<td>$0</td>
<td>$850,000</td>
<td>$850,000</td>
</tr>
<tr>
<td>30</td>
<td>CR 500 S / Whitestown Road & CR 875 E</td>
<td>$0</td>
<td>$800,000</td>
<td>$800,000</td>
</tr>
<tr>
<td>31</td>
<td>CR 500 S / 126th Street & US 421 / Michigan Road</td>
<td>$0</td>
<td>$80,000</td>
<td>$80,000</td>
</tr>
<tr>
<td>34</td>
<td>Willow Road & US 421 / Michigan Road</td>
<td>$0</td>
<td>$50,000</td>
<td>$50,000</td>
</tr>
<tr>
<td>41</td>
<td>CR 300 S / 146th Street & US 421 / Michigan Road</td>
<td>$0</td>
<td>$100,000</td>
<td>$100,000</td>
</tr>
<tr>
<td>42</td>
<td>CR 300 S & CR 975 E</td>
<td>$0</td>
<td>$50,000</td>
<td>$50,000</td>
</tr>
<tr>
<td>47</td>
<td>CR 200 S & US 421 / Michigan Road</td>
<td>$0</td>
<td>$130,000</td>
<td>$130,000</td>
</tr>
<tr>
<td>72</td>
<td>Proposed East/West Connector Rd & Zionsville Rd</td>
<td>$50,000</td>
<td>$50,000</td>
<td>$0</td>
</tr>
<tr>
<td>73</td>
<td>96th Street & Bennett Pkwy</td>
<td>$50,000</td>
<td>$50,000</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>$1,400,000</td>
<td>$9,110,000</td>
<td>$7,710,000</td>
</tr>
<tr>
<td>#</td>
<td>Street/Segment</td>
<td>Today's Cost</td>
<td>10-Year Cost</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Hunt Club Rd: Kissel Rd-Cooper Road</td>
<td>$15,800</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>106th Street: Zionsville Rd-Bennett Pkwy</td>
<td>$0</td>
<td>$713,700</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Oak Street: CR 700 E-CR 800 E</td>
<td>$0</td>
<td>$1,490,100</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Oak Street: CR 800 E-CR 850 E</td>
<td>$0</td>
<td>$702,500</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Oak Street: Spring Hills Dr-Sheets Rd</td>
<td>$0</td>
<td>$285,700</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Oak Street: Sheets Rd-CR 1000 E</td>
<td>$0</td>
<td>$702,500</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Sycamore Street: Main St-US 421/Michigan Rd</td>
<td>$0</td>
<td>$917,400</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>116th Street: US 421/Michigan Rd-County Line Rd</td>
<td>$0</td>
<td>$134,900</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>126th Street: US421/Michigan Rd-County Line Rd</td>
<td>$45,200</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>CR 400 S: CR 800 E-CR 875 E</td>
<td>$63,200</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>CR 375 S: CR 950 E-CR 975 E</td>
<td>$10,700</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>CR 375 S: CR 975 E-Holiday Rd</td>
<td>$21,300</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>CR 100 N: CR 800 E-US 421/Michigan Rd</td>
<td>$27,700</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>CR 200 N: CR 1100 E-County Line Rd</td>
<td>$62,500</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>CR 600 E: CR 100 N-CR 250 N</td>
<td>$104,200</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>CR 700 E: Morton Rd-CR 550 S</td>
<td>$20,900</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>CR 700 E: CR 550 S-CR 525 S</td>
<td>$10,300</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>CR 750 E: CR 100 N-CR 200 N</td>
<td>$83,300</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>CR 775/Kissel Rd: 96th St-I-865</td>
<td>$20,900</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>CR 775/Kissel Rd: Hunt Club Rd-SR 334/Oak St</td>
<td>$36,300</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>CR 800 E: CR 550 S-Whitestown Rd</td>
<td>$27,700</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>CR 800 E: Whitestown Rd-CR 400 S</td>
<td>$34,800</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>CR 800 E: SR 32-CR 100 N</td>
<td>$83,300</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>CR 800 E: CR 100 N-CR 200 N</td>
<td>$83,300</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>CR 1000 E: SR 32-CR 100 N</td>
<td>$21,300</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>CR 1000 E: CR 100 N-CR 200 N</td>
<td>$20,900</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Turkey Foot Rd: Mulberry St-Oak Ridge Drive</td>
<td>$36,900</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Zionsville Rd: I-865-106th Street</td>
<td>$181,600</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>CR 1100 E: CR 200 S-SR 32</td>
<td>$83,300</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>CR 1100 E: SR 32-End of Asphalt</td>
<td>$31,100</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>County Line Rd: 146th St-156th St</td>
<td>$41,700</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>County Line Rd: 156th St-166th St</td>
<td>$41,700</td>
<td>$0</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2 CONTINUED - ESTIMATED ROADWAY CONSTRUCTION COSTS

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
<th>Cost 1</th>
<th>Cost 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>County Line Rd: 166th St-SR 32</td>
<td>$41,700</td>
<td>$0</td>
</tr>
<tr>
<td>126</td>
<td>County Line Rd: SR 32-CR 100 N</td>
<td>$41,700</td>
<td>$0</td>
</tr>
<tr>
<td>127</td>
<td>County Line Rd: CR 100 N-CR 200 N</td>
<td>$41,700</td>
<td>$0</td>
</tr>
<tr>
<td>128</td>
<td>Proposed E/W Connector: Zionsville Rd-Mayflower Park Drive</td>
<td>$637,000</td>
<td>$637,000</td>
</tr>
<tr>
<td>129A</td>
<td>Bennett Pkwy Extension: Proposed E/W Connector-96th St</td>
<td>$720,000</td>
<td>$720,000</td>
</tr>
<tr>
<td>129B</td>
<td>Bennett Pkwy Extension: 106th St-Proposed E/W Connector</td>
<td>Covered in Bonds Issued in 2012.</td>
<td>$720,000</td>
</tr>
<tr>
<td>130</td>
<td>Cooper Rd Extension: CR 575-SR 334/Oak Street</td>
<td>$472,850</td>
<td>$472,850</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>$3,164,850</td>
<td>$7,496,650</td>
</tr>
</tbody>
</table>

Figure 3 graphically illustrates all recommended roadway segment and intersection improvement locations. These include all recommendations for existing conditions and/or 10-year conditions. However the roadway segments that only need widening to meet minimum lane width standards have not been included. Only segments where added travel lanes are needed are shown.
TOTAL COSTS

Table 3 summarizes the total “Today’s Cost” and “10-Year Cost” for the study area intersections and roadways. In addition, the Total Applicable Impact Fee Cost is shown. This cost is the difference between the “10-Year Cost” for intersections and roadways and the intersection and roadway “Today’s Cost”.

TABLE 3 – TOTAL COSTS

<table>
<thead>
<tr>
<th></th>
<th>Today’s Cost</th>
<th>10-Year Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersections (Table 1)</td>
<td>$1,400,000</td>
<td>$9,110,000</td>
</tr>
<tr>
<td>Roadways (Table 2)</td>
<td>$3,164,850</td>
<td>$7,496,650</td>
</tr>
<tr>
<td>Total Cost</td>
<td>$4,564,850</td>
<td>$16,606,650</td>
</tr>
<tr>
<td>Total Applicable Impact Fee Cost (10-Year Cost – Today’s Cost)</td>
<td>$12,041,800</td>
<td></td>
</tr>
</tbody>
</table>

PARCEL 24-HOUR TRIP DATA

In order to determine a traffic impact fee cost per trip, the total number of trips that will be generated during a 24-hour weekday period for each of the assumed 10-year developed parcels has been determined. Table 4 identifies each of the parcel numbers (referenced on Figure 2), the ITE code, the assumed land use, parcel build-out and the resulting number of calculated twenty-four hour weekday trips for each parcel of land analyzed in this study.
<table>
<thead>
<tr>
<th>Parcel #</th>
<th>ITE Code</th>
<th>Land Use</th>
<th>Build-Out</th>
<th>24-Hour Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>720</td>
<td>Medical Office</td>
<td>323,200 SF</td>
<td>13,001</td>
</tr>
<tr>
<td>2</td>
<td>770</td>
<td>Business Park</td>
<td>715,200 SF</td>
<td>8,311</td>
</tr>
<tr>
<td>3</td>
<td>210</td>
<td>Single Family</td>
<td>168 DU</td>
<td>1,693</td>
</tr>
<tr>
<td>4</td>
<td>813</td>
<td>Discount Superstore</td>
<td>156,621 SF</td>
<td>7,948</td>
</tr>
<tr>
<td></td>
<td>820</td>
<td>Retail</td>
<td>13,620 SF</td>
<td>1,858</td>
</tr>
<tr>
<td>5</td>
<td>760</td>
<td>Research Technology</td>
<td>1,152,000 SF</td>
<td>7,638</td>
</tr>
<tr>
<td>6</td>
<td>210</td>
<td>Single Family</td>
<td>65 DU</td>
<td>707</td>
</tr>
<tr>
<td>7</td>
<td>820</td>
<td>Retail</td>
<td>178,800 SF</td>
<td>9,908</td>
</tr>
<tr>
<td></td>
<td>710</td>
<td>Office</td>
<td>45,000 SF</td>
<td>716</td>
</tr>
<tr>
<td></td>
<td>220</td>
<td>Apartments</td>
<td>276 DU</td>
<td>1,796</td>
</tr>
<tr>
<td></td>
<td>252</td>
<td>Senior Living</td>
<td>102 DU</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>Supermarket</td>
<td>31,000 SF</td>
<td>3,169</td>
</tr>
<tr>
<td></td>
<td>820</td>
<td>Retail</td>
<td>111,000 SF</td>
<td>7,268</td>
</tr>
<tr>
<td>8</td>
<td>710</td>
<td>Office</td>
<td>6,600 SF</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>820</td>
<td>Retail</td>
<td>15,000 SF</td>
<td>1,979</td>
</tr>
<tr>
<td>9</td>
<td>210</td>
<td>Single Family</td>
<td>62 DU</td>
<td>677</td>
</tr>
<tr>
<td>10</td>
<td>210</td>
<td>Single Family</td>
<td>76 DU</td>
<td>816</td>
</tr>
<tr>
<td>11</td>
<td>210</td>
<td>Single Family</td>
<td>95 DU</td>
<td>1,002</td>
</tr>
<tr>
<td>12</td>
<td>210</td>
<td>Single Family</td>
<td>96 DU</td>
<td>1,012</td>
</tr>
<tr>
<td>13</td>
<td>210</td>
<td>Single Family</td>
<td>26 DU</td>
<td>304</td>
</tr>
<tr>
<td>14</td>
<td>210</td>
<td>Single Family</td>
<td>34 DU</td>
<td>389</td>
</tr>
<tr>
<td>15</td>
<td>210</td>
<td>Single Family</td>
<td>360 DU</td>
<td>3,413</td>
</tr>
<tr>
<td>16</td>
<td>210</td>
<td>Single Family</td>
<td>26 DU</td>
<td>304</td>
</tr>
<tr>
<td>17</td>
<td>210</td>
<td>Single Family</td>
<td>321,600 SF</td>
<td>14,511</td>
</tr>
<tr>
<td></td>
<td>210</td>
<td>Single Family</td>
<td>284 DU</td>
<td>2,744</td>
</tr>
<tr>
<td>18</td>
<td>750</td>
<td>Office Park</td>
<td>648,600 SF</td>
<td>7,167</td>
</tr>
<tr>
<td>19</td>
<td>750</td>
<td>Office Park</td>
<td>404,200 SF</td>
<td>4,621</td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>Supermarket</td>
<td>30,000 SF</td>
<td>3,067</td>
</tr>
<tr>
<td></td>
<td>820</td>
<td>Retail</td>
<td>20,000 SF</td>
<td>2,386</td>
</tr>
<tr>
<td></td>
<td>220</td>
<td>Apartments</td>
<td>200 DU</td>
<td>1,336</td>
</tr>
<tr>
<td></td>
<td>230</td>
<td>Townhomes</td>
<td>24 DU</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>932</td>
<td>Sit-Down Restaurant</td>
<td>5,539 SF</td>
<td>704</td>
</tr>
<tr>
<td></td>
<td>820</td>
<td>Retail</td>
<td>8,560 SF</td>
<td>366</td>
</tr>
<tr>
<td>23</td>
<td>710</td>
<td>Office</td>
<td>16,000 SF</td>
<td>326</td>
</tr>
<tr>
<td>Total</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111,840</td>
</tr>
</tbody>
</table>

- DU = Dwelling Unit, SF = Square Feet
IMPACT FEE CALCULATION

The method used for determining the overall traffic impact fee is based on the sum of the Total Applicable Impact Fee Cost added to the cost of performing the impact fee study minus any year to date Impact Fee funds that have been collected. This results in the “Total Impact Fee Cost”. The Total Impact Fee Cost is then divided by the total number of 24-hour trips generated by the 10-Year developments shown in Table 5. **Table 5** shows the calculation of the Traffic Impact Fee per trip that can be assessed to future developments.

Table 5 - Calculation of Impact Fee

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Applicable Impact Fee Cost</td>
<td>$12,041,800</td>
</tr>
<tr>
<td>Cost of Performing Impact Fee Study</td>
<td>$211,385</td>
</tr>
<tr>
<td>Total Impact Fee Cost</td>
<td>$12,253,185</td>
</tr>
<tr>
<td>YTD Impact Fee Receipts</td>
<td>-$324,350</td>
</tr>
<tr>
<td>Total Impact Fee Cost</td>
<td>$11,928,835</td>
</tr>
<tr>
<td>24-Hour Trips from Vacant Land Parcels</td>
<td>111,840</td>
</tr>
<tr>
<td>Traffic Impact Fee per 24-Hour Generated Trip (equals Total Impact Fee Cost divided by the 24-hour trips)</td>
<td>$106</td>
</tr>
</tbody>
</table>

ANNUAL IMPACT FEE EVALUATION

The estimated construction costs that have been used to determine the impact fees presented in this report are based on year 2013 construction costs. Therefore, it could be necessary to re-evaluate the impact fee on an annual basis to reflect the annual inflation of costs for intersection and road construction.

EXAMPLES OF TYPICAL IMPACT FEES COLLECTED

The following information describes the typical steps for translating the $106 fee per trip into a fee that is collected for a new development.
SINGLE FAMILY HOMES

For single family homes (ITE Code 210), a standard fee per dwelling unit is determined based on the average 24-hour trip rate that a single family home generates for a typical weekday. Table 6 shows that the standard fee per single family dwelling unit would be $1009.

Table 6 – Example of Typical Fees Collected per Single Family Home

<table>
<thead>
<tr>
<th>Land Use</th>
<th>ITE Code</th>
<th>24-Hour Average Trip Rate*</th>
<th>Impact Fee per 24-Hour Trip</th>
<th>Impact Fee Collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Family Home</td>
<td>210</td>
<td>9.52</td>
<td>$106 per 24-Hour Trip</td>
<td>$1009 per DU</td>
</tr>
</tbody>
</table>

Table 6 – Example of Typical Fees Collected per Single Family Home

24-Hour Trips per DU

Notes

DU = Dwelling Unit

*The 24-hour average trip rate of a single family home for a typical weekday was determined using the most recent edition of the ITE Trip Generation Manual (9th Edition). This manual is a compilation of trip data for various land uses as collected by transportation professionals throughout the United States in order to establish the average number of trips generated by those land uses.

OTHER LAND USES

For other land uses (i.e. apartments, office, retail, etc.) the number of 24-hour trips generated by each new development for a typical weekday would need to be determined on a case by case basis using the methods and procedures outlined in the most recent editions of the ITE Trip Generation Manual. The generated 24-hour trip number for the new development is then multiplied by the $106 fee per trip to determine the collected fee. Table 7 shows the typical impact fees that would be collected for a variety of land uses. For each land use the table lists the ITE Code classification, a range of typical sizes, the 24-hour weekday trips generated by each size and the resulting impact fee to be collected (including pass-by trip reductions where applicable). It should be noted that the land uses listed in the table are only a small sample of the different types of land uses classified by the ITE Trip Generation Manual.
Table 7 – Examples of Typical Fees Collected for Other Land Uses

<table>
<thead>
<tr>
<th>Land Use</th>
<th>ITE Code</th>
<th>Size</th>
<th>24-Hour Trips</th>
<th>Impact Fee per 24-Hour Trip</th>
<th>Impact Fee Collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Family Apartments</td>
<td>220</td>
<td>100 DU</td>
<td>730</td>
<td>$106</td>
<td>$77,380</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200 DU</td>
<td>1336</td>
<td>$106</td>
<td>$141,616</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300 DU</td>
<td>1942</td>
<td>$106</td>
<td>$205,852</td>
</tr>
<tr>
<td>Industrial Park</td>
<td>130</td>
<td>100,000 SF</td>
<td>1177</td>
<td>$106</td>
<td>$124,762</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200,000 SF</td>
<td>1676</td>
<td>$106</td>
<td>$177,656</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300,000 SF</td>
<td>2175</td>
<td>$106</td>
<td>$230,550</td>
</tr>
<tr>
<td>General Office</td>
<td>710</td>
<td>50,000 SF</td>
<td>775</td>
<td>$106</td>
<td>$82,150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100,000 SF</td>
<td>1313</td>
<td>$106</td>
<td>$139,178</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200,000 SF</td>
<td>2223</td>
<td>$106</td>
<td>$235,638</td>
</tr>
<tr>
<td>General Retail</td>
<td>820</td>
<td>50,000 SF</td>
<td>2856</td>
<td>$106</td>
<td>$302,736</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100,000 SF</td>
<td>4482</td>
<td>$106</td>
<td>$475,092</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200,000 SF</td>
<td>7033</td>
<td>$106</td>
<td>$745,498</td>
</tr>
</tbody>
</table>

Notes

DU = Dwelling Unit, SF = Square Feet

The generated 24-hour trips for a typical weekday were determined by using the methods and procedures outlined in the most recent editions of the *ITE Trip Generation Manual* (9th Edition, 2012). The trip manual is a compilation of trip data for various land uses as collected by transportation professionals throughout the United States in order to establish the average number of trips generated by those land uses and also provides the procedures and data used to estimate the pass-by traffic reductions for the retail land use.
Rational Nexus Theory

The Town of Zionsville selected A&F Engineering to provide the engineering assessment required to develop a fair and appropriate impact fee based on the existing and future roadway needs of the Town. This impact fee will be used to upgrade existing intersections and roads and to construct future roadway facilities to provide Zionsville residents with safe and uninterrupted travel through the Town.

In order to develop a meaningful impact fee study, the Rational Nexus Theory was implemented. This analysis determines the impact fee that would be required to fund the future roadway needs of the Town. The Rational Nexus Theory simply states that new developments cannot be held responsible for the existing inadequacy of the street system. Therefore, this study was developed in two separate parts. The first part determined the existing inadequacy of the intersections and roadways in the study area and assigned costs to bring those intersections/roadways up to acceptable standards to accommodate the existing traffic volumes. The second part of the analysis determined the traffic volumes that would be generated by the vacant parcels of land within the study area. The generated traffic volumes were assigned to the street system in the study area. The projected future traffic volumes were then used to test the street system to determine the improvements to the intersections and roadways that would be necessary to accommodate the added traffic volumes. Costs were then calculated that would be required to upgrade the street system from the mitigated existing conditions to the proposed design. This amount is the cost the development community will be required to fund to meet the future needs of the Town. The resulting traffic impact fee cost is $106 per generated trip during a twenty-four hour period.

In determining the results of this analysis, A & F Engineering has followed acceptable traffic and transportation engineering methodology that is pertinent and has completed this study by following the Rational Nexus Theory to its complete understanding.
SUMMARY TABLES FOR INTERSECTIONS

A tabular summary of the analysis considering each study intersection is shown in the following pages. The existing intersection conditions and existing level of service (LOS) results are shown in the top left-hand corner under the heading “Existing Conditions”. The existing conditions include the existing traffic control and existing intersection geometrics. The existing intersection geometrics are illustrated as black arrows along each approach of the intersection. Each arrow represents one lane along the approach and the traffic movements that can be made from that lane. An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1. The existing LOS results are based on the existing traffic control, existing intersection geometrics and the existing AM peak hour and PM peak hour traffic volumes. The existing intersection traffic volumes for the peak hours can be found on the “Intersection Traffic Movements” figures in Exhibit 2.

Level of service “C” has been selected for this study by the Town of Zionsville’s impact fee advisory board as the minimum acceptable LOS for intersections. If necessary, mitigated conditions for the existing traffic volumes have been recommended for intersections that currently operate below the minimum acceptable LOS. These conditions and the resulting levels of service are shown at the top under the heading “Mitigated Conditions for Existing Traffic Volumes”. Red arrows represent lanes that are either in addition to the existing intersection geometrics or that have been converted from a turn lane to a through lane. In addition, if a change in intersection control is needed then the recommended type of traffic control is noted. A description of the improvements needed to mitigate the existing traffic volumes is listed below along with the estimated construction cost for those improvements (Today’s Cost).

The projected 10-year traffic volumes for the AM peak hour and PM peak hour have been determined for each intersection and can be found on the “Intersection Traffic Movements” figures in Exhibit 2. If necessary, mitigated conditions have been recommended so that the intersection will operate at acceptable levels of service during the peak hours with the projected 10-year traffic volumes. These conditions are shown in the top right-hand corner under the heading “Mitigated Conditions for Projected 10-Yr. Traffic Volumes”. Again, red arrows represent lanes that are either in addition to the existing intersection geometrics or have been converted from a turn lane to a through lane and if a change in intersection control is needed then the recommended control type is noted. The LOS results for the projected 10-year traffic volumes are also shown in the top right-
hand corner. A description of the improvements needed to mitigate the projected 10-year traffic volumes is listed below along with the estimated construction cost (10-Year Cost) for the improvements.

Proposed intersections will serve both existing traffic from the current users of Zionsville’s roadway network as well as additional future traffic generated by the development of vacant land parcels. Therefore, any construction cost associated with a proposed intersection is due to both the existing traffic (Today’s Cost) and the additional future traffic (10-Year Cost). The cost associated with these new facilities has been divided equally between “Today’s Cost” and “10-Year Cost”.

Finally, the “Applicable Impact Fee Cost” for all improvements needed at each intersection is shown for each intersection. In most cases the recommended improvements were made to meet or exceed minimum LOS standards; however, engineering design judgment and Town guidance were used to drive recommended designs in some instances. It should be noted however that in these cases impact fee costs were not included.
INTERSECTION #1 – 96TH STREET & ZIONSVILLE ROAD

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): C/C Traffic Signal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions

Improvements Needed to Mitigate Existing Traffic Volumes: • No improvements are necessary.

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

Improvements Needed to Mitigate Projected 10-Year Traffic Volumes: • No improvements are necessary.

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #2 – 96TH STREET & COOPER ROAD

Existing Conditions
LOS(AM Peak/PM Peak): A/A
All-way stop

Mitigated Conditions for Existing Traffic Volumes

Mitigated Conditions for Proj. 10-Yr. Traffic Volumes
LOS(AM Peak/PM Peak): A/A
All-way stop

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions
Improvements Needed to Mitigate
Existing Traffic Volumes: • No improvements are necessary.

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

Improvements Needed to Mitigate
Projected 10-Year Traffic Volumes: • No improvements are necessary.

Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost
Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #3 – 96TH STREET & CR 775 E/KISSEL ROAD

Existing Conditions

LOS (AM Peak/PM Peak): A/A
One-way stop with 96th Street stopping for CR 775 E

Mitigated Conditions for Existing Traffic Volumes

Mitigated Conditions for Proj. 10-Yr. Traffic Volumes

LOS(AM Peak/PM Peak): A/A
One-way stop with 96th Street stopping for CR 775 E

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions

Improvements Needed to Mitigate
Existing Traffic Volumes: • No improvements are necessary.

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

Improvements Needed to Mitigate
Projected 10-Year Traffic Volumes:
No improvements are necessary

Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #4 – 106TH STREET & BENNETT PARKWAY

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/B All-way stop</td>
<td></td>
<td>LOS (AM Peak/PM Peak): C/C Roundabout</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions

Improvements Needed to Mitigate Existing Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

Improvements Needed to Mitigate Projected 10-Year Traffic Volumes: Install Single Lane Roundabout with an EB right-turn lane and WB right-turn lane.

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $1,300,000

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”: $1,300,000
INTERSECTION #5 – HUNT CLUB ROAD & FORD ROAD

Existing Conditions
LOS (AM Peak/PM Peak): C/C
One-way stop with Hunt Club Rd. stopping for Ford Road.

Mitigated Conditions for Existing Traffic Volumes

Mitigated Conditions for Proj. 10-Yr. Traffic Volumes

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions
Improvements Needed to Mitigate
Existing Traffic Volumes: • No improvements are necessary.

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Improvements Needed to Mitigate
Projected 10-Year Traffic Volumes: • No improvements are necessary.

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost
Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #6 – HUNT CLUB ROAD & COOPER ROAD

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/A All-way stop</td>
<td></td>
<td>LOS (AM Peak/PM Peak): A/A All-way Stop</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions

Improvements Needed to Mitigate Existing Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

Improvements Needed to Mitigate Projected 10-Year Traffic Volumes: • No improvements are necessary.

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #7 – HUNT CLUB ROAD & CR 775 E/KISSEL ROAD

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/A</td>
<td>LOS (AM Peak/PM Peak): A/A</td>
<td>Two-way stop with CR 700 S/Hunt Club Road stopping for CR 775 E/Kissel Road</td>
</tr>
<tr>
<td>Two-way stop with CR 700 S/Hunt Club Road stopping for CR 775 E/Kissel Road</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions

Improvements Needed to Mitigate Existing Traffic Volumes:
- No improvements are necessary.

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost):
$0

Projected 10-Year Conditions

Improvements Needed to Mitigate Projected 10-Year Traffic Volumes:
- No improvements are necessary.

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost):
$0

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”:
$0
INTERSECTION #8 – 106TH STREET & ZIONSVILLE ROAD

Existing Conditions

<table>
<thead>
<tr>
<th>Mitigated Conditions for</th>
<th>Mitigated Conditions for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Traffic Volumes</td>
<td>Proj. 10-Yr. Traffic Volumes</td>
</tr>
</tbody>
</table>

- **LOS(AM Peak/PM Peak):**
 - **F/D**
 - **B/D**
 - **D/F**

- **Traffic Signal**

Existing Conditions

- **One-way stop with 106th Street stopping for Zionsville Rd.**

Existing Traffic Volumes

- Improvements Needed to Mitigate
- Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost):
 - $160,000

Projected 10-Year Conditions

- Improvements Needed to Mitigate
 - Upgrade to a traffic signal control.
- Projected 10-Year Traffic Volumes:
 - Additional through lanes are not recommended in order to preserve the character of the area.

- Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost):
 - $160,000

Applicable Impact Fee Cost

- Equals “10-Year Cost” minus “Today’s Cost”:
 - $0

NOTE:

Additional through lanes are not recommended in order to preserve the character of the area.

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.
INTERSECTION #9 – CONTINENTAL DRIVE/SALT AVE & FORD ROAD

Existing Conditions
- LOS (AM Peak/PM Peak): C/D
- Two-way stop with Salt Ave stopping for Ford Road.

Mitigated Conditions for Existing Traffic Volumes
- No changes are currently recommended.

Mitigated Conditions for Proj. 10-Yr. Traffic Volumes
- LOS (AM Peak/PM Peak): C/F
- Two-way stop with Salt Ave. stopping for Ford Road.

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions
- Improvements Needed to Mitigate: No changes are currently recommended.
- Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
- Improvements Needed to Mitigate: No changes are currently recommended.
- Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost
- Equals “10-Year Cost” minus “Today’s Cost”: $0

NOTE:
Adding turn lanes does not improve LOS to an acceptable level during the PM Peak Hour. In addition, the Peak Hour Signal Warrant is not met for either the AM or PM Peak at this location. Therefore, no changes or improvements are currently recommended.
INTERSECTION #10 – SYCAMORE STREET & ZIONSVILLE ROAD/MAIN STREET

Existing Conditions
LOS (AM Peak/PM Peak): B/B
Traffic Signal

Mitigated Conditions for Existing Traffic Volumes

Mitigated Conditions for Proj. 10-Yr. Traffic Volumes
LOS (AM Peak/PM Peak): B/C
Traffic Signal

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions
Improvements Needed to Mitigate
No improvements are necessary.

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost):
$0

Projected 10-Year Conditions

Improvements Needed to Mitigate

Projected 10-Year Traffic Volumes:
• Add NB right-turn lane & NB left-turn lane along Zionsville Rd
• Add EB through lane. This lane is included under the segment recommendations.
• Add EB right-turn lane along Sycamore Street
• Add WB left-turn lane along Sycamore Street

Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost):
$200,000 (EB through lane included in segment cost)

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”:
$200,000
INTERSECTION #11 – OAK STREET & FIRST STREET

Existing Conditions
- LOS(AM Peak/PM Peak): B/E
- All-way stop

Mitigated Conditions for Existing Traffic Volumes
- Traffic Signal

Mitigated Conditions for Proj. 10-Yr. Traffic Volumes
- Traffic Signal

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions
- Improvements Needed to Mitigate Existing Traffic Volumes:
 - Upgrade to a traffic signal control
 - Add EB right-turn lane along Oak Street.
 - Add NB left-turn lane along 1st Street.

- Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $260,000

Projected 10-Year Conditions
- Improvements Needed to Mitigate Projected 10-Year Traffic Volumes:
 - Upgrade to a traffic signal control.
 - Add EB right-turn lane along Oak Street.
 - Add NB left-turn lane along 1st Street.

- Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $260,000

Applicable Impact Fee Cost
- Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #12 – OAK STREET & SIXTH STREET

Existing Conditions

Mitigated Conditions for
Existing Traffic Volumes

Mitigated Conditions for
Proj. 10-Yr. Traffic Volumes

LOS (AM Peak/PM Peak): C/E

Two-way stop with
Sixth Street
stopping for Oak St.

LOS (AM Peak/PM Peak): D/F

Two-way stop with
Sixth Street
stopping for Oak St.

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions

Improvements Needed to Mitigate
Existing Traffic Volumes:

• No improvements are recommended at this time.

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost):

$0

Projected 10-Year Conditions

Improvements Needed to Mitigate
Projected 10-Year Traffic Volumes:

• No improvements are recommended at this time.

Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost):

$0

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”:

$0

NOTE:

Adding turn lanes does not improve the LOS to an acceptable level during the PM Peak Hour. In addition, neither the AM Peak Hour or the PM Peak Hour traffic volumes meet the Peak Hour Signal Warrant requirements. Therefore, no improvements are currently recommended.
INTERSECTION #13 – OAK STREET & FORD ROAD

Existing Conditions

Los (AM Peak/PM Peak): B/C

Traffic Signal

Mitigated Conditions for Existing Traffic Volumes

No improvements are necessary.

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost):

$0

Projected 10-Year Conditions

Improvements Needed to Mitigate Projected 10-Year Traffic Volumes:

Add EB through lane and WB through lane along Oak Street. These lanes are included under the segment recommendations.

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost):

$0 (Cost for through lanes are included in segment costs)

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”:

$0

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.
INTERSECTION #14 – OAK STREET & SHEETS ROAD/CR 950 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
</table>
| LOS (AM Peak/PM Peak): C/D | Two-way stop with Sheets Road stopping for Oak Street | LOS (AM Peak/PM Peak): D/F
Two-way stop with Sheet Road stopping for Oak Street |

An in-depth illustration of the existing intersection conditions is also shown in [Exhibit 1](#).

Existing Conditions

Improvements Needed to Mitigate

Existing Traffic Volumes:

- No improvements necessary

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost):

$0

Projected 10-Year Conditions

Improvements Needed to Mitigate

Projected 10-Year Traffic Volumes:

- Improvements are included under the segment recommendations.

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost):

$0

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”:

$0

NOTE:

Neither the AM Peak Hour or the PM Peak Hour traffic volumes meet the Peak Hour Signal Warrant requirements. Therefore, no additional improvements are currently recommended.
INTERSECTION #15 – OAK STREET & COOPER ROAD

Existing Conditions

LOS (AM Peak/PM Peak): C/C
One-way stop with Cooper Road stopping for Oak Street

Mitigated Conditions for Existing Traffic Volumes

No improvements necessary

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

Improvements Needed to Mitigate Projected 10-Year Traffic Volumes:

- Install a Double Lane Roundabout.

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $1,600,000

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”: $1,600,000

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.
INTERSECTION #16 – OAK STREET & CR 800 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): C/E</td>
<td>LOS(AM Peak/PM Peak): A/B</td>
<td>LOS(AM Peak/PM Peak): A/B</td>
</tr>
<tr>
<td>Two-way stop with CR 800 E stopping for Oak Street</td>
<td>Roundabout</td>
<td>Roundabout</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions
Improvements Needed to Mitigate
Existing Traffic Volumes:
- Install a Single Lane Roundabout

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $800,000

Projected 10-Year Conditions
Improvements Needed to Mitigate
Projected 10-Year Traffic Volumes:
- Install a Double Lane Roundabout

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $1,600,000

Applicable Impact Fee Cost
Equals “10-Year Cost” minus “Today’s Cost”: $800,000
INTERSECTION #17 – SYCAMORE STREET & MICHIGAN ROAD

Existing Conditions

<table>
<thead>
<tr>
<th>LOS (AM Peak/PM Peak): C/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Signal</td>
</tr>
</tbody>
</table>

Mitigated Conditions for Existing Traffic Volumes

- No improvements are necessary.

Mitigated Conditions for Proj. 10-Yr. Traffic Volumes

- LOS (AM Peak/PM Peak): C/C
- Traffic Signal

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions

Improvements Needed to Mitigate Existing Traffic Volumes:

- No improvements are necessary.

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost):

- $0

Projected 10-Year Conditions

Improvements Needed to Mitigate Projected 10-Year Traffic Volumes:

- Add EB left-turn lane along Sycamore Street
- Add EB and WB though lane along Sycamore Street. These lanes are included under segment recommendations.
- Add a NB through lane and SB through lane along Michigan Road (These lanes are the responsibility of the state)

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost):

- $50,000 (Sycamore Street through lanes included in segment costs)

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”:

- $50,000
INTERSECTION #18 – BLOOR LANE & MULBERRY STREET

Existing Conditions
Mitigated Conditions for
Existing Traffic Volumes
LOS (AM Peak/PM Peak): B/B
One-way stop with Bloor Lane
stopping for Mulberry Street

Mitigated Conditions for
Proj. 10-Yr. Traffic Volumes
LOS(AM Peak/PM Peak): C/D
One-way stop with Bloor Lane
stopping for Mulberry Street

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions
Improvements Needed to Mitigate
Existing Traffic Volumes: • No improvements are necessary.

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Improvements Needed to Mitigate
Projected 10-Year Traffic Volumes:
• Add a NB left-turn lane along Mulberry Street
• Add EB right-turn lane along Bloor Lane

Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $100,000

Applicable Impact Fee Cost
Equals “10-Year Cost” minus “Today’s Cost”: $100,000
INTERSECTION #19 – BLOOR LANE & FORD ROAD

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): C/C</td>
<td>LOS (AM Peak/PM Peak): A/A</td>
<td>LOS (AM Peak/PM Peak): B/B</td>
</tr>
<tr>
<td>All-way stop</td>
<td>Roundabout</td>
<td>Roundabout</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

The Town is currently investigating a project that would convert this intersection into a Single-Lane Roundabout. Therefore, this location was not assigned any cost at this time.
INTERSECTION #20 – CR 600 S & FORD ROAD

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): B/B</td>
<td>One-way stop with CR 600 S stopping for Ford Road</td>
<td>LOS (AM Peak/PM Peak): C/B One-way stop with CR 600 S stopping for Ford Road</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

The Town is currently investigating a project for this location that would convert the intersection of Bloor Lane and Ford Road into a Single-Lane Roundabout while this intersection remains as it is currently. Therefore, this location was not assigned any costs at this time.
INTERSECTION #21 – CRUSE ROAD & CR 950 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/A All-way stop</td>
<td>LOS (AM Peak/PM Peak): A/A All-way stop</td>
<td></td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions

Improvements Needed to Mitigate Existing Traffic Volumes: • No improvements are necessary.

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

Improvements Needed to Mitigate Projected 10-Year Traffic Volumes: • No improvements are necessary.

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #22 – MULBERRY STREET & TURKEY FOOT ROAD

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): B/B One-way stop with Turkey Foot Road stopping for Mulberry Street</td>
<td>LOS (AM Peak/PM Peak): C/C One-way stop with Turkey Foot Road stopping for Mulberry Street</td>
<td></td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions

Improvements Needed to Mitigate Existing Traffic Volumes: • No improvements are necessary.

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

Improvements Needed to Mitigate Projected 10-Year Traffic Volumes: • No improvements are necessary.

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #23 – CR 550 S & MICHIGAN ROAD

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): E/F Two-way stop with CR 550 S/Templin Road stopping for Michigan Road</td>
<td>Traffic Signal</td>
<td>Traffic Signal</td>
</tr>
<tr>
<td>LOS (AM Peak/PM Peak): B/B</td>
<td>Traffic Signal</td>
<td>Traffic Signal</td>
</tr>
<tr>
<td>LOS (AM Peak/PM Peak): C/B</td>
<td>Traffic Signal</td>
<td>Traffic Signal</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions

Improvements Needed to Mitigate Existing Traffic Volumes:
- Upgrade to a traffic signal control.

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $80,000 (50% Responsibility of the State)

Projected 10-Year Conditions

Improvements Needed to Mitigate Projected 10-Year Traffic Volumes:
- Upgrade to a traffic signal control.

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $80,000 (50% Responsibility of the State)

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #24 – CR 550 S & CR 1100 E

Existing Conditions
Mitigated Conditions for
Existing Traffic Volumes
Mitigated Conditions for
Proj. 10-Yr. Traffic Volumes

LOS (AM Peak/PM Peak): B/B
One-way stop with CR 550 S
stopping for CR 1100 E.

LOS (AM Peak/PM Peak): B/B
One-way stop with CR 550 S
stopping for CR 1100 E.

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions
Improvements Needed to Mitigate
Existing Traffic Volumes: • No improvements are necessary.
Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Improvements Needed to Mitigate
Projected 10-Year Traffic Volumes: • No improvements are necessary.
Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost
Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #25 – CR 550 S & CR 875 E

Existing Conditions

<table>
<thead>
<tr>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/A All-way stop</td>
<td>LOS(AM Peak/PM Peak): A/A All-way stop</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions

Improvements Needed to Mitigate Existing Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

Improvements Needed to Mitigate Projected 10-Year Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #26 – CR 550 S & CR 800 E

Existing Conditions

- **LOS (AM Peak/PM Peak): A/A**
- All-way stop

Mitigated Conditions for Existing Traffic Volumes

- **No improvements are necessary.**

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost):

- **$0**

Projected 10-Year Conditions

- **Improvements Needed to Mitigate**
- **Projected 10-Year Traffic Volumes:**

- No improvements are necessary.

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost):

- **$0**

Applicable Impact Fee Cost

- **Equals “10-Year Cost” minus “Today’s Cost”: $0**

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.
INTERSECTION #27 – CR 550 S & CR 700 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/A</td>
<td>All-way stop</td>
<td>LOS (AM Peak/PM Peak): A/A All-way stop</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions

Improvements Needed to Mitigate

Existing Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate

Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

Improvements Needed to Mitigate

Projected 10-Year Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate

Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #28 – MULBERRY STREET & FORD ROAD

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): C/C</td>
<td>LOS (AM Peak/PM Peak): C/C</td>
<td>Roundabout</td>
</tr>
<tr>
<td>All-way stop</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions

Improvements Needed to Mitigate Existing Traffic Volumes:

- No improvements are necessary.

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost):

$0

Projected 10-Year Conditions

Improvements Needed to Mitigate Projected 10-Year Traffic Volumes:

- Install a Double Lane Roundabout.

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost):

$1,600,000

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”:

$1,600,000
INTERSECTION #29 – WHITESTOWN ROAD & CR 950 E

Existing Conditions

LOS (AM Peak/PM Peak): B/C
Two-way stop with CR 950 E stopping for Whitestown Road

Mitigated Conditions for Existing Traffic Volumes

No improvements are necessary.

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost):

$0

Projected 10-Year Conditions

Improvements Needed to Mitigate

• Install a Single Lane Roundabout
• Add WB right-turn lane along Whitestown Road

Projected 10-Year Traffic Volumes:

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost):

$850,000

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”:

$850,000

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.
INTERSECTION #30 – WHITESTOWN ROAD & CR 875 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/A</td>
<td>• No improvements are necessary.</td>
<td>LOS(AM Peak/PM Peak): A/B</td>
</tr>
<tr>
<td>All-way stop</td>
<td></td>
<td>Roundabout</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions

Improvements Needed to Mitigate Existing Traffic Volumes: • No improvements are necessary.

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

Improvements Needed to Mitigate Projected 10-Year Traffic Volumes: • Install a Single Lane Roundabout.

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $800,000

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”: $800,000
INTERSECTION #31 – 126TH STREET & MICHIGAN ROAD

Existing Conditions

Mitigated Conditions for Existing Traffic Volumes

Mitigated Conditions for Proj. 10-Yr. Traffic Volumes

LOS (AM Peak/PM Peak): D/D
One-way stop with CR 500
S/126th Street stopping for US 421/Michigan Road

Traffic Signal

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions

Improvements Needed to Mitigate
Existing Traffic Volumes:

• No improvements are necessary.

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost):

• No improvements are necessary.

Projected 10-Year Conditions

Improvements Needed to Mitigate
Projected 10-Year Traffic Volumes:

• Upgrade to a traffic signal control.

Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost):

$80,000 (Additional $80,000 Responsibility of State)

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”:

$80,000
INTERSECTION #32 – OAK RIDGE DRIVE & TURKEY FOOT ROAD

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/A</td>
<td>LOS (AM Peak/PM Peak): A/A</td>
<td>LOS (AM Peak/PM Peak): A/A</td>
</tr>
<tr>
<td>One-way stop with Oak Ridge Drive stopping for Turkey Foot Road</td>
<td>One-way stop with Oak Ridge Drive stopping for Turkey Foot Road</td>
<td>One-way stop with Oak Ridge Drive stopping for Turkey Foot Road</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions
Improvements Needed to Mitigate
Existing Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Improvements Needed to Mitigate
Projected 10-Year Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost
Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #33 – WHITESTOWN ROAD & CR 800 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/A All-way stop</td>
<td></td>
<td>LOS (AM Peak/PM Peak): A/A All-way stop</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions
Improvements Needed to Mitigate Existing Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Improvements Needed to Mitigate Projected 10-Year Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost
Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #34 – WILLOW ROAD & MICHIGAN ROAD

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): B/B Traffic Signal</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
<td>LOS (AM Peak/PM Peak): C/C Traffic Signal</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions

Improvements Needed to Mitigate Existing Traffic Volumes:

No improvements are necessary.

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost):

$0

Projected 10-Year Conditions

Improvements Needed to Mitigate Projected 10-Year Traffic Volumes:

- Add NB left-turn lane (Responsibility of State)
- Add NB shared through/right-turn lane (Responsibility of State)
- Add SB left-turn lane (Responsibility of State)
- Add SB shared through/right-turn lane (Responsibility of State)
- Add WB left-turn lane.

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost):

$50,000 (Additional $100,000 Responsibility of State)

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”:

$50,000
INTERSECTION #35 – OAK RIDGE DRIVE & CR 975 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): B/B</td>
<td>LOS (AM Peak/PM Peak): B/B</td>
<td>Two-way stop with Oak Ridge Drive stopping for CR 975 E</td>
</tr>
<tr>
<td>Two-way stop with Oak Ridge Drive stopping for CR 975 E</td>
<td>Two-way stop with Oak Ridge Drive stopping for CR 975 E</td>
<td></td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions

Improvements Needed to Mitigate

Existing Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate

Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

Improvements Needed to Mitigate

Projected 10-Year Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate

Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #36 – CR 400 S & CR 875 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/B</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
</tr>
<tr>
<td>Two-way stop with CR 400 S stopping for CR 875 E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions

Improvements Needed to Mitigate

Existing Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate

Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

Improvements Needed to Mitigate

Projected 10-Year Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate

Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #37 – CR 400 S & CR 800 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/A All-way stop</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions
Improvements Needed to Mitigate
Existing Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Improvements Needed to Mitigate
Projected 10-Year Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost
Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #38 – CR 375 S & CR 975 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/A</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
</tr>
<tr>
<td>Two-way stop with CR 375 S stopping for CR 975 E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions
Improvements Needed to Mitigate
Existing Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Improvements Needed to Mitigate
Projected 10-Year Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost
Equals “10-Year Cost” minus “Today’s Cost”: $0
Intersection #39 – CR 350 S & CR 875 E

Existing Conditions

- LOS (AM Peak/PM Peak): A/A
- One-way stop with CR 350 S stopping for CR 875 E

Mitigated Conditions for Existing Traffic Volumes

- No improvements are necessary.

Mitigated Conditions for Proj. 10-Yr. Traffic Volumes

- LOS (AM Peak/PM Peak): B/B
- One-way stop with CR 350 S. stopping for CR 875 E.

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions

- Improvements Needed to Mitigate: No improvements are necessary.

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

- Improvements Needed to Mitigate: No improvements are necessary.

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost

- Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #40 – CR 300 S & COUNTY LINE ROAD

Existing Conditions

- LOS (AM Peak/PM Peak): B/B
- One-way stop with County Line Road stopping for 146th Street

Mitigated Conditions for Existing Traffic Volumes

- NO IMPROVEMENTS ARE NECESSARY

Mitigated Conditions for Proj. 10-Yr. Traffic Volumes

- NO IMPROVEMENTS ARE NECESSARY

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions

- Improvements Needed to Mitigate:
 - No improvements are necessary.

- Estimated Construction Cost to Mitigate:
 - Existing Traffic Volumes (Today’s Cost): $0
 - Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Projected 10-Year Conditions

- Improvements Needed to Mitigate:
 - No improvements are necessary.

- Estimated Construction Cost to Mitigate:
 - Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost

- Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #41 – CR 300 S & MICHIGAN ROAD

Existing Conditions
LOS (AM Peak/PM Peak): B/B
Traffic Signal

Mitigated Conditions for Existing Traffic Volumes

Mitigated Conditions for Proj. 10-Yr. Traffic Volumes
LOS (AM Peak/PM Peak): C/C
Traffic Signal

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions
Improvements Needed to Mitigate
Existing Traffic Volumes:
No improvements are necessary.

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost):
$0

Projected 10-Year Conditions
Improvements Needed to Mitigate
Projected 10-Year Traffic Volumes:
• Add EB right-turn lane along 146th Street
• Add WB right-turn lane along 146th Street
• Add SB right-turn lane along Michigan Road (Responsibility of State)

Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost):
$100,000 (Additional $50,000 Responsibility of State)

Applicable Impact Fee Cost
Equals “10-Year Cost” minus “Today’s Cost”:
$100,000
INTERSECTION #42 – CR 300 S & CR 975 E

Existing Conditions

LOS (AM Peak/PM Peak): A/A

All-way stop

Mitigated Conditions for Existing Traffic Volumes

Mitigated Conditions for Proj. 10-Yr. Traffic Volumes

LOS(AM Peak/PM Peak): C/D

Two-way stop controlled intersection with CR 975 E stopping for CR 300 S.

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions

Improvements Needed to Mitigate

Existing Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate

Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

Improvements Needed to Mitigate

Projected 10-Year Traffic Volumes: • Add SB left-turn lane along CR 975 E

Estimated Construction Cost to Mitigate

Proj. 10-Yr. Traffic Volumes (10-Year Cost): $50,000

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”: $50,000

NOTE:

Adding turn lanes does not improve the LOS to an acceptable level during the PM Peak Hour. In addition, neither the AM Peak Hour or the PM Peak Hour traffic volumes meet the Peak Hour Signal Warrant requirements. Therefore, no improvements are currently recommended.
INTERSECTION #43 – CR 300 S & CR 875 E

Existing Conditions

Mitigated Conditions for
Existing Traffic Volumes

Mitigated Conditions for
Proj. 10-Yr. Traffic Volumes

LOS (AM Peak/PM Peak): A/A
All-way stop

LOS(AM Peak/PM Peak): A/C
All-way stop

No improvements are necessary

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions
Improvements Needed to Mitigate Existing Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Improvements Needed to Mitigate Projected 10-Year Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost
Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #44 – CR 300 S & CR 800 E

Existing Conditions

Los (AM Peak/PM Peak): A/A
One-way stop with CR 800 E stopping for CR 300 S

Mitigated Conditions for Existing Traffic Volumes

No improvements are necessary

Mitigated Conditions for Proj. 10-Yr. Traffic Volumes

No improvements are necessary

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions

Improvements Needed to Mitigate

Existing Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate

Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

Improvements Needed to Mitigate

Projected 10-Year Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate

Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #45 – CR 200 S/156TH STREET & COUNTY LINE ROAD

Existing Conditions

Mitigated Conditions for Existing Traffic Volumes

Mitigated Conditions for Proj. 10-Yr. Traffic Volumes

LOS (AM Peak/PM Peak): A/A
All-way stop

LOS(AM Peak/PM Peak): B/A
All-way stop

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions

Improvements Needed to Mitigate
Existing Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

Improvements Needed to Mitigate
Projected 10-Year Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #46 – CR 200 S & CR 1100 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/A</td>
<td>No improvements are necessary</td>
<td>LOS (AM Peak/PM Peak): B/B</td>
</tr>
<tr>
<td>One-way stop with CR 1100 E stopping for CR 200 S</td>
<td></td>
<td>One-way stop with CR 1100 E stopping for CR 200 S</td>
</tr>
</tbody>
</table>

![Diagram](image)

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions

Improvements Needed to Mitigate

Existing Traffic Volumes:

No improvements are necessary.

Estimated Construction Cost to Mitigate

Existing Traffic Volumes (Today’s Cost):

$0

Projected 10-Year Conditions

Improvements Needed to Mitigate

Projected 10-Year Traffic Volumes:

No improvements are necessary.

Estimated Construction Cost to Mitigate

Proj. 10-Yr. Traffic Volumes (10-Year Cost):

$0

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”:

$0
INTERSECTION #47 – CR 200 S & MICHIGAN ROAD

Existing Conditions
LOS (AM Peak/PM Peak): C/C
Two-way stop with CR 200 S stopping for US 421/Michigan Road

Mitigated Conditions for Existing Traffic Volumes
No improvements are necessary.
Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Impressments Needed to Mitigate Projected 10-Year Traffic Volumes:
• Upgrade to a traffic signal control (50% Responsibility of the State).
• Add NB left-turn lane along Michigan Rd (All Costs are the Responsibility of the State).
• Add WB left-turn lane along CR 200 S.

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $130,000 (Additional $130,000 Responsibility of the State)

Applicable Impact Fee Cost
Equals “10-Year Cost” minus “Today’s Cost”: $130,000

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.
INTERSECTION #48 – CR 200 S & CR 975 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/A</td>
<td></td>
<td>LOS(AM Peak/PM Peak): A/A</td>
</tr>
<tr>
<td>All-way stop</td>
<td></td>
<td>All-way stop</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions
Improvements Needed to Mitigate Existing Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Improvements Needed to Mitigate Projected 10-Year Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost
Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #49 – CR 200 S & CR 900 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/A</td>
<td>All-way stop</td>
<td>LOS(AM Peak/PM Peak): A/A</td>
</tr>
</tbody>
</table>

![Diagram of intersection]

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions
- Improvements Needed to Mitigate Existing Traffic Volumes: No improvements are necessary.
- Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
- Improvements Needed to Mitigate Projected 10-Year Traffic Volumes: No improvements are necessary.
- Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost
- Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #50 – CR 100 S & MICHIGAN ROAD

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): B/B</td>
<td>One-way stop with CR 100 S stopping for US 421/Michigan Road</td>
<td>LOS (AM Peak/PM Peak): C/C One-way stop with CR 100 S stopping for US 421/Michigan Road</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions

Improvements Needed to Mitigate Existing Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

Improvements Needed to Mitigate Projected 10-Year Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #51 – CR 100 S & CR 800 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/A</td>
<td>LOS(AM Peak/PM Peak): A/A</td>
<td></td>
</tr>
<tr>
<td>One-way stop with CR 800 E stopping for CR 100 S</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions

Improvements Needed to Mitigate Existing Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

Improvements Needed to Mitigate Projected 10-Year Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #52 – CR 100 S & CR 700 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/A</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
</tr>
<tr>
<td>Two-way stop with CR 700 E stopping for CR 100 S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions

Improvements Needed to Mitigate

Existing Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate

Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

Improvements Needed to Mitigate

Projected 10-Year Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate

Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #53 – SR 32 & COUNTY LINE ROAD

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): C/C</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
<td>LOS (AM Peak/PM Peak): C/C</td>
</tr>
<tr>
<td>Two-way stop with County Line Road stopping for SR 32</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
<td>Two-way stop with County Line Road stopping for SR 32</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions

- Improvements Needed to Mitigate
- Existing Traffic Volumes: No improvements are necessary.
- Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

- Improvements Needed to Mitigate
- Projected 10-Year Traffic Volumes: No improvements are necessary.
- Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost

- Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #54 – SR 32 & CR 1100 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
</table>
| LOS (AM Peak/PM Peak): C/C | LOS (AM Peak/PM Peak): C/E | Two-way stop with CR 1100 E stopping for SR 32
| Two-way stop with CR 1100 E stopping for SR 32 | NO IMPROVEMENTS ARE NECESSARY | NONE RECOMMENDED AT THIS TIME |

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions

Improvements Needed to Mitigate

Existing Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate

Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

Improvements Needed to Mitigate

Projected 10-Year Traffic Volumes: No improvements are necessary at this time.

Estimated Construction Cost to Mitigate

Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”: $0

NOTE:

Neither the AM Peak Hour or the PM Peak Hour traffic volumes meet the Peak Hour Signal Warrant requirements. Therefore, no improvements are currently recommended.
INTERSECTION #55 – SR 32 & CR 1000 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): B/B</td>
<td>No improvements are necessary.</td>
<td>LOS (AM Peak/PM Peak): B/C</td>
</tr>
<tr>
<td>One-way stop with CR 1000 E stopping for SR 32</td>
<td></td>
<td>One-way stop with CR 1000 E stopping for SR 32</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions
Improvements Needed to Mitigate
Existing Traffic Volumes: No improvements are necessary.
Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Improvements Needed to Mitigate
Projected 10-Year Traffic Volumes: No improvements are necessary.
Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost
Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #56 – SR 32 & MICHIGAN ROAD

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): C/C</td>
<td>Traffic Signal</td>
<td>LOS (AM Peak/PM Peak): B/B</td>
</tr>
<tr>
<td>All-way stop</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions

Improvements Needed to Mitigate Existing Traffic Volumes:

No improvements are necessary.

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost):

$0

Projected 10-Year Conditions

Improvements Needed to Mitigate Proj. 10-Yr. Traffic Volumes:

- Upgrade to a traffic signal control.

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost):

$0 (All Costs are the Responsibility of the State)

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”:

$0
INTERSECTION #57 – SR 32 & CR 900 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/B</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
<td>LOS (AM Peak/PM Peak): B/B</td>
</tr>
<tr>
<td>One-way stop with CR 900 E stopping for SR 32</td>
<td></td>
<td>One-way stop with CR 900 E stopping for SR 32</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions
Improvements Needed to Mitigate
Existing Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Improvements Needed to Mitigate
Projected 10-Year Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost
Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #58 – SR 32 & CR 800 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): B/A</td>
<td>LOS (AM Peak/PM Peak): B/C</td>
<td>Two-way stop with CR 800 E stopping for SR 32</td>
</tr>
<tr>
<td>Two-way stop with CR 800 E stopping for SR 32</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions
- Improvements Needed to Mitigate
 - Existing Traffic Volumes: No improvements are necessary.
 - Estimated Construction Cost to Mitigate
 - Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
- Improvements Needed to Mitigate
 - Projected 10-Year Traffic Volumes: No improvements are necessary.
- Estimated Construction Cost to Mitigate
 - Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost
- Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #59 – SR 32 & CR 700 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/B</td>
<td>LOS (AM Peak/PM Peak): B/C</td>
<td>Two-way stop with CR 700 E stopping for SR 32</td>
</tr>
<tr>
<td>Two-way stop with CR 700 E stopping for SR 32</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions

Improvements Needed to Mitigate

Existing Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate

Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

Improvements Needed to Mitigate

Projected 10-Year Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate

Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #60 – SR 32 & CR 650 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): B/B</td>
<td>No improvements are necessary.</td>
<td>LOS (AM Peak/PM Peak): B/C</td>
</tr>
<tr>
<td>Two-way stop with CR 650 E stopping for SR 32</td>
<td></td>
<td>Two-way stop with CR 650 E stopping for SR 32</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions
Improvements Needed to Mitigate
Existing Traffic Volumes: No improvements are necessary.
Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Improvements Needed to Mitigate
Projected 10-Year Traffic Volumes: No improvements are necessary.
Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost
Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #61 – SR 32 & CR 600 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): B/A</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
</tr>
<tr>
<td>One-way stop with CR 600 E stopping for SR 32</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions
Improvements Needed to Mitigate
Existing Traffic Volumes: No improvements are necessary.
Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Improvements Needed to Mitigate
Projected 10-Year Traffic Volumes: No improvements are necessary.
Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost
Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #62 – CR 100 N & COUNTY LINE ROAD

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/A</td>
<td>Two-way stop with CR 100 N stopping for County Line Road</td>
<td>Two-way stop with CR 100 N stopping for County Line Road</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions
Improvements Needed to Mitigate
Existing Traffic Volumes: No improvements are necessary.
Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Improvements Needed to Mitigate
Projected 10-Year Traffic Volumes: No improvements are necessary.
Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost
Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #63 – CR 100 N & MICHIGAN ROAD

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): B/B</td>
<td>Two-way stop with CR 100 N stopping for US 421</td>
<td>Two-way stop with CR 100 N stopping for US 421</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions
Improvements Needed to Mitigate Existing Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Improvements Needed to Mitigate Projected 10-Year Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost
Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #64 – CR 100 N & CR 600 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/A</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
</tr>
<tr>
<td>Two-way stop with CR 600 E stopping for CR 100 N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions
- Improvements Needed to Mitigate Existing Traffic Volumes: No improvements are necessary.
- Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
- Improvements Needed to Mitigate Projected 10-Year Traffic Volumes: No improvements are necessary.
- Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost
- Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #65 – CR 200 N & COUNTY LINE ROAD

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/A</td>
<td></td>
<td>LOS(AM Peak/PM Peak): A/A</td>
</tr>
<tr>
<td>Two-way stop with CR 200 N stopping for County Line Road</td>
<td>No improvements are necessary.</td>
<td>No improvements are necessary.</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions
Improvements Needed to Mitigate
Existing Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Improvements Needed to Mitigate
Projected 10-Year Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost
Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #66 – CR 200 N & CR 1100 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/A</td>
<td>Two-way stop with CR 1100 E stopping for CR 200 N</td>
<td>Two-way stop with CR 1100 E stopping for CR 200 N</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions

Improvements Needed to Mitigate

Existing Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate

Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

Improvements Needed to Mitigate

Projected 10-Year Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate

Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #67 – CR 200 N & CR 1000 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/A</td>
<td>LOS(AM Peak/PM Peak): A/A</td>
<td>Two-way stop with CR 1000 E stopping for CR 200 N</td>
</tr>
<tr>
<td>Two-way stop with CR 1000 E stopping for CR 200 N</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions

Improvements Needed to Mitigate

Existing Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate

Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

Improvements Needed to Mitigate

Projected 10-Year Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate

Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #68 – CR 200 N & MICHIGAN ROAD

Existing Conditions
Los (AM Peak/PM Peak): B/B
Two-way stop with CR 200 N stopping for US 421

Mitigated Conditions for Existing Traffic Volumes

Mitigated Conditions for Proj. 10-Yr. Traffic Volumes

LOS (AM Peak/PM Peak): B/B
Two-way stop with CR 200 N stopping for US 421

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions
Improvements Needed to Mitigate
Existing Traffic Volumes: No improvements are necessary.
Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Improvements Needed to Mitigate
Projected 10-Year Traffic Volumes: No improvements are necessary.
Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost
Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #69 – CR 200 N & CR 800 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/A</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
</tr>
<tr>
<td>Two-way stop with CR 800 E stopping for CR 200 N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions
Improvements Needed to Mitigate
Existing Traffic Volumes: No improvements are necessary.
Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Improvements Needed to Mitigate
Projected 10-Year Traffic Volumes: No improvements are necessary.
Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost
Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #70 – CR 200 N & CR 750 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/A</td>
<td>LOS(AM Peak/PM Peak): A/A</td>
<td>One-way stop with CR 750 E stopping for CR 200 N</td>
</tr>
<tr>
<td>One-way stop with CR 750 E stopping for CR 200 N</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in **Exhibit 1**.

Existing Conditions
Improvements Needed to Mitigate

Existing Traffic Volumes: No improvements are necessary.

Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Improvements Needed to Mitigate

Projected 10-Year Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate

Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #71 – CR 200 N & CR 675 E

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>Mitigated Conditions for Existing Traffic Volumes</th>
<th>Mitigated Conditions for Proj. 10-Yr. Traffic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (AM Peak/PM Peak): A/A</td>
<td>LOS(AM Peak/PM Peak): A/A</td>
<td></td>
</tr>
<tr>
<td>One-way stop with CR 200 N stopping for CR 675 E</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
<td>NO IMPROVEMENTS ARE NECESSARY</td>
</tr>
</tbody>
</table>

An in-depth illustration of the existing intersection conditions is also shown in Exhibit 1.

Existing Conditions

Improvements Needed to Mitigate

Existing Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate

Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

Improvements Needed to Mitigate

Projected 10-Year Traffic Volumes: No improvements are necessary.

Estimated Construction Cost to Mitigate

Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

Applicable Impact Fee Cost

Equals “10-Year Cost” minus “Today’s Cost”: $0
INTERSECTION #72 – PROPOSED E/W CONNECTOR & ZIONSVILLE ROAD

Proposed Intersection Conditions that will Accommodate the Projected 10-Year Traffic Volumes

- LOS (AM Peak/PM Peak): B/B
- One-way stop with Proposed E/W Connector stopping for Zionsville Road

- Add WB left turn lane. This lane is included under the segment recommendations.
- Add WB right turn lane. This lane is included under the segment recommendations.
- Add SB left turn lane.
- Add NB right turn lane.

Construction Estimate

The cost of the lanes on the Proposed East/West Connector is included in the cost of the segment. The remaining cost for the intersection is $100,000. This $100,000 is divided evenly with $50,000 being applied to “Today’s Cost” and $50,000 being applied to the “10-Year Cost”.

- Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $50,000
- Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $50,000
- Equals “10-Year Cost” minus “Today’s Cost” (Applicable Impact Fee Cost): $0
INTERSECTION #73 – 96TH STREET & BENNETT PARKWAY (PROPOSED)

Proposed Intersection Conditions that will Accommodate the Projected 10-Year Traffic Volumes

LOS (AM Peak/PM Peak): B/B

One-way stop with Bennett Parkway stopping for 96th Street

<table>
<thead>
<tr>
<th>Existing Lanes</th>
<th>Additional/Converted Lanes</th>
</tr>
</thead>
</table>

Proposed Intersection Conditions

- Add SB left turn lane. This lane is included under the segment recommendations.
- Add SB right turn lane. This lane is included under the segment recommendations.
- Add EB left turn lane.
- Add WB right turn lane.

Construction Estimate

The cost of the lanes on the Proposed Bennett Parkway Extension is included in the cost of the segment. The remaining cost for the intersection is $100,000. This $100,000 is divided evenly with $50,000 being applied to “Today’s Cost” and $50,000 being applied to the “10-Year Cost”.

Estimated Construction Cost to Mitigate

Existing Traffic Volumes (Today’s Cost): $50,000

Estimated Construction Cost to Mitigate

Proj. 10-Yr. Traffic Volumes (10-Year Cost): $50,000

Equals “10-Year Cost” minus “Today’s Cost” (Applicable Impact Fee Cost): $0
SUMMARY TABLES FOR ROADWAY SEGMENTS

A tabular summary of the analysis considering each roadway segment is shown in the following pages. For each roadway segment the existing conditions are listed first which includes the segment length, the number of lanes with the corresponding pavement width and the effective shoulder width. The existing level of service (LOS) results are then listed which are based on the existing conditions and existing AM peak hour and PM peak hour traffic volumes along the roadway segment. The existing peak hour traffic volumes as well as the existing average daily traffic volumes (ADT) can be found on the “Roadway Segment Summary” figures in the Exhibit 3.

Level of service “D” has been selected for this study by the Town of Zionsville’s impact fee advisory board as the minimum acceptable LOS for roadway segments. In addition, a minimum pavement width of 20 feet has been selected for two-lane roadways based on the guidelines set forth in AASHTO’s *A Policy on Geometric Design of Highways and Streets*. If necessary, mitigated conditions for the existing traffic volumes have been recommended for roadway segments that currently operate below the minimum acceptable LOS or are below the minimum pavement width. The estimated construction cost (Today’s Cost) associated with the improvements is also listed.

The projected 10-year traffic volumes for the AM peak hour and PM peak hour have been projected for each roadway segment and can be found on the “Roadway Segment Summary” figures in the Exhibit 3. The recommended “Projected 10-Year Conditions” that will accommodate the projected traffic volumes are listed second in the summary tables. The construction cost of implementing the projected 10-Year Conditions that are above and beyond either the existing conditions or any improvements needed for the existing traffic volumes is also listed as “10-Year Cost”.

Proposed roadways will serve both existing traffic from the current users of Zionsville’s roadway network as well as additional future traffic generated by the development of vacant land parcels. Therefore, any construction cost associated with a proposed roadway segment is due to both the existing traffic and the additional future traffic. The proportion of the total construction cost that is either “Today’s Cost” or “10-Year Cost” has been estimated based on the cost associated with these new facilities which has been divided equally between “Today’s Cost” and “10-Year Cost”. All
roadway segment construction cost estimates are based on the typical roadway sections for the Town of Zionsville, Indiana.

In most cases the recommended improvements were made to meet or exceed minimum LOS standards; however, engineering design judgment and Town guidance were used to drive recommended designs in some instances. It should be noted; however, that in these cases impact fee costs were not included. Finally, the Town has directed that all gravel roads be included in this analysis but minimum width standards were not applicable. Therefore, no costs (Today’s or 10-Year) were applied.
96TH STREET

SEGMENT #1: CR 775 E/KISSEL ROAD TO CR 850 E/COOPER ROAD

Existing Conditions
Length: 4,000 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10.5 Feet Each
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10.5 Feet Each
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #2: CR 850 E/COOPER ROAD TO FORD ROAD

Existing Conditions
Length: 8,400 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/B
Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #3: FORD ROAD E TO I-865

Existing Conditions

<table>
<thead>
<tr>
<th>Length:</th>
<th>3,000 Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing # Lanes / Approximate Width:</td>
<td>2 Lanes / 10 Feet Each</td>
</tr>
<tr>
<td>Existing Effective Shoulder Width:</td>
<td>1 Foot</td>
</tr>
<tr>
<td>Existing Level of Service (AM peak / PM peak):</td>
<td>LOS C/C</td>
</tr>
</tbody>
</table>

Estimated Construction Cost to Mitigate

| Existing Traffic Volumes (Today’s Cost): | $0 |

Projected 10-Year Conditions

Recommended # Lanes / Width:	2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width:	1 Foot
Resulting Level of Service (AM peak / PM peak):	LOS C/D

Additional Estimated Construction Cost to Mitigate

| Proj. 10-Yr. Traffic Volumes (10-Year Cost): | $0 |

SEGMENT #4: I-865 TO ZIONSVILLE ROAD

Existing Conditions

<table>
<thead>
<tr>
<th>Length:</th>
<th>2,200 Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing # Lanes / Approximate Width:</td>
<td>2 Lanes / 12.5 Feet Each</td>
</tr>
<tr>
<td>Existing Effective Shoulder Width:</td>
<td>Curb & Gutter</td>
</tr>
<tr>
<td>Existing Level of Service (AM peak / PM peak):</td>
<td>LOS C/C</td>
</tr>
</tbody>
</table>

Estimated Construction Cost to Mitigate

| Existing Traffic Volumes (Today’s Cost): | $0 |

Projected 10-Year Conditions

Recommended # Lanes / Width:	2 Lanes / 12.5 Feet Each
Recommended Effective Shoulder Width:	Curb & Gutter
Resulting Level of Service (AM peak / PM peak):	LOS C/D

Additional Estimated Construction Cost to Mitigate

| Proj. 10-Yr. Traffic Volumes (10-Year Cost): | $0 |
SEGMENT #5: ZIONSVILLE ROAD TO COUNTY LINE

Existing Conditions
Length: 5,420 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 12 Feet Each
Existing Effective Shoulder Width: 2 Feet
Existing Level of Service (AM peak / PM peak): LOS C/C

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 12 Feet Each
Recommended Effective Shoulder Width: 2 Feet
Resulting Level of Service (AM peak / PM peak): LOS D/D

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

CR 700 S / HUNT CLUB ROAD

SEGMENT #6: CR 775 E/KISSEL ROAD TO CR 850/COOPER ROAD

Existing Conditions
Length: 4,000 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 9.5 Feet Each
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $15,800

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/A

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #7: COOPER ROAD TO FORD ROAD

Existing Conditions
Length: 8,000 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 11 Feet Each
Existing Effective Shoulder Width: 2 Feet
Existing Level of Service (AM peak / PM peak): LOS A/A

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 11 Feet Each
Recommended Effective Shoulder Width: 2 Feet
Resulting Level of Service (AM peak / PM peak): LOS B/B

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

106TH STREET

SEGMENT #8: BENNETT PARKWAY TO US 421/MICHIGAN ROAD

Existing Conditions
Length: 3,000 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 12 Feet Each with 14 foot Two-way Left-turn Lane
Existing Effective Shoulder Width: Curb & Gutter
Existing Level of Service (AM peak / PM peak): LOS C/D

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 12 Feet Each with 14 foot Two-way Left-turn Lane
Recommended Effective Shoulder Width: Curb & Gutter
Resulting Level of Service (AM peak / PM peak): LOS D/D

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #9: ZIONSVILLE ROAD TO BENNETT PARKWAY

Existing Conditions
Length: 3,000 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 20 Feet Each with 15 foot Median
Existing Effective Shoulder Width: Curb & Gutter
Existing Level of Service (AM peak / PM peak): LOS C/C
Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 4 Lanes / 12 Feet Each with 15 foot Median
Recommended Effective Shoulder Width: Curb & Gutter
Resulting Level of Service (AM peak / PM peak): LOS B/B
Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $713,700

OAK STREET / SYCAMORE STREET

SEGMENT #10: I-865 TO CR 650 E

Existing Conditions
Length: 2,250 Feet
Existing # Lanes / Approximate Width: 4 Lanes / 12 Feet Each
Existing Effective Shoulder Width: 12 Feet
Existing Level of Service (AM peak / PM peak): LOS B/B
Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 4 Lanes / 12 Feet Each
Recommended Effective Shoulder Width: 12 Feet
Resulting Level of Service (AM peak / PM peak): LOS B/C
Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #11: CR 650 E TO CR 700 E

Existing Conditions

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>2,300 Feet</td>
</tr>
<tr>
<td>Existing # Lanes / Approximate Width:</td>
<td>4 Lanes / 12 Feet Each, 10 foot Turn lanes, 5 foot median</td>
</tr>
<tr>
<td>Existing Effective Shoulder Width:</td>
<td>12 Feet</td>
</tr>
<tr>
<td>Existing Level of Service (AM peak / PM peak):</td>
<td>LOS A/A</td>
</tr>
</tbody>
</table>

Estimated Construction Cost to Mitigate

| Existing Traffic Volumes (Today’s Cost): | $0 |

Projected 10-Year Conditions

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended # Lanes / Width:</td>
<td>4 Lanes / 12 Feet Each, 10 foot Turn lanes, 5 foot median</td>
</tr>
<tr>
<td>Recommended Effective Shoulder Width:</td>
<td>12 Feet</td>
</tr>
<tr>
<td>Resulting Level of Service (AM peak / PM peak):</td>
<td>LOS A/B</td>
</tr>
</tbody>
</table>

Additional Estimated Construction Cost to Mitigate

| Proj. 10-Yr. Traffic Volumes (10-Year Cost): | $0 |

SEGMENT #12: CR 700 E TO CR 800 E

Existing Conditions

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>5,600 Feet</td>
</tr>
<tr>
<td>Existing # Lanes / Approximate Width:</td>
<td>2 Lanes / 12 Feet Each</td>
</tr>
<tr>
<td>Existing Effective Shoulder Width:</td>
<td>5 Feet</td>
</tr>
<tr>
<td>Existing Level of Service (AM peak / PM peak):</td>
<td>LOS C/C</td>
</tr>
</tbody>
</table>

Estimated Construction Cost to Mitigate

| Existing Traffic Volumes (Today’s Cost): | $0 |

Projected 10-Year Conditions

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended # Lanes / Width:</td>
<td>4 Lanes / 12 Feet Each w/ Median or TWLTL</td>
</tr>
<tr>
<td>Recommended Effective Shoulder Width:</td>
<td>Curb & Gutter</td>
</tr>
<tr>
<td>Resulting Level of Service (AM peak / PM peak):</td>
<td>LOS A/B</td>
</tr>
</tbody>
</table>

Additional Estimated Construction Cost to Mitigate

| Proj. 10-Yr. Traffic Volumes (10-Year Cost): | $1,490,100 |
SEGMENT #13: CR 800 E TO CR 850 E

Existing Conditions
Length: 2,640 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 12 Feet Each
Existing Effective Shoulder Width: 4 Feet
Existing Level of Service (AM peak / PM peak): LOS C/C

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 4 Lanes / 12 Feet Each w/ Median or TWLTL
Recommended Effective Shoulder Width: Curb & Gutter
Resulting Level of Service (AM peak / PM peak): LOS B/B
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $702,500

SEGMENT #14: CR 850 E TO SPRING HILLS DRIVE

Existing Conditions
Length: 4,250 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 12 Feet Each
Existing Effective Shoulder Width: 4 Feet
Existing Level of Service (AM peak / PM peak): LOS C/C

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 4 Lanes / 12 Feet Each w/ Median or TWLTL
Recommended Effective Shoulder Width: Curb & Gutter
Resulting Level of Service (AM peak / PM peak): LOS B/B
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

NOTE:
The level of service results for the existing geometrics and 10-year traffic projections showed that acceptable levels of service could be attained. However, the segments to the immediate east and west of this segment require 4 lanes. Therefore, at the Town’s direction to maintain the roadway geometric consistency this segment is recommended to be 4 lanes. However, no impact fee costs are applicable.
SEGMENT #15: SPRING HILLS DRIVE TO SHEETS ROAD/BENTLEY DRIVE

Existing Conditions
- **Length:** 1,050 Feet
- **Existing # Lanes / Approximate Width:** 2 Lanes / 11.5 Feet Each
- **Existing Effective Shoulder Width:** 10 Feet
- **Existing Level of Service (AM peak / PM peak):** LOS C/D

Estimated Construction Cost to Mitigate
- **Existing Traffic Volumes (Today’s Cost):** $0

Projected 10-Year Conditions
- **Recommended # Lanes / Width:** 4 Lanes / 12 Feet Each w/ Median or TWLTL
- **Recommended Effective Shoulder Width:** Curb & Gutter
- **Resulting Level of Service (AM peak / PM peak):** LOS B/B
- **Additional Estimated Construction Cost to Mitigate**
- **Proj. 10-Yr. Traffic Volumes (10-Year Cost):** $285,700

SEGMENT #16: SHEETS ROAD/BENTLEY DRIVE TO FORD ROAD

Existing Conditions
- **Length:** 2,640 Feet
- **Existing # Lanes / Approximate Width:** 2 Lanes / 12 Feet Each
- **Existing Effective Shoulder Width:** 4 Feet
- **Existing Level of Service (AM peak / PM peak):** LOS C/D

Estimated Construction Cost to Mitigate
- **Existing Traffic Volumes (Today’s Cost):** $0

Projected 10-Year Conditions
- **Recommended # Lanes / Width:** 4 Lanes / 12 Feet Each w/ Median or TWLTL
- **Recommended Effective Shoulder Width:** Curb & Gutter
- **Resulting Level of Service (AM peak / PM peak):** LOS B/B
- **Additional Estimated Construction Cost to Mitigate**
- **Proj. 10-Yr. Traffic Volumes (10-Year Cost):** $702,500
SEGMENT #17: FORD ROAD TO SIXTH STREET

Existing Conditions
Length: 3,350 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 12 Feet Each
Existing Effective Shoulder Width: Curb & Gutter
Existing Level of Service (AM peak / PM peak): LOS D/D

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 12 Feet Each
Recommended Effective Shoulder Width: Curb & Gutter
Resulting Level of Service (AM peak / PM peak): LOS D/F

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

NOTE: In order to maintain the current character of the roadway system and surrounding neighborhood, the Town has determined that this roadway would remain “as-is” under all scenarios. Therefore, no cost (Today’s or 10-Year) were assigned to this segment.

SEGMENT #18: SIXTH STREET TO FIRST STREET

Existing Conditions
Length: 1,300 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 12 Feet Each
Existing Effective Shoulder Width: Curb & Gutter
Existing Level of Service (AM peak / PM peak): LOS C/D

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 12 Feet Each
Recommended Effective Shoulder Width: Curb & Gutter
Resulting Level of Service (AM peak / PM peak): LOS D/E

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

NOTE: In order to maintain the current character of the roadway system and surrounding neighborhood, the Town has determined that this roadway would remain “as-is” under all scenarios. Therefore, no cost (Today’s or 10-Year) were assigned to this segment.
SEGMENT #19: SYCAMORE STREET FROM MAIN STREET TO US 421/MICHIGAN ROAD

Existing Conditions
Length: 5,800 Feet
Existing # Lanes / Approximate Width: 2 – 3 Lanes / 12 Feet Each
Existing Effective Shoulder Width: Curb & Gutter / 3 – 8 Feet
Existing Level of Service (AM peak / PM peak): LOS C/D

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 4 Lanes / 12 Feet Each
Recommended Effective Shoulder Width: Curb & Gutter / 3 – 8 Feet
Resulting Level of Service (AM peak / PM peak): LOS B/B

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $917,400

116TH STREET

SEGMENT #20: US 421/MICHIGAN ROAD TO COUNTY LINE

Existing Conditions
Length: 700 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 12 Feet Each with 2 left-turn lanes/11.5 feet each
Existing Effective Shoulder Width: Curb & Gutter
Existing Level of Service (AM peak / PM peak): LOS D/D

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 4 Lanes / 12 Feet Each with 2 left-turn lanes/11.5 feet each
Recommended Effective Shoulder Width: Curb & Gutter
Resulting Level of Service (AM peak / PM peak): LOS B/B

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $134,900
CRUSE ROAD / CR 600 S

SEGMENT #21: CR 900 E TO CR 950 E

Existing Conditions
Length: 2,700 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 9 – 10 Feet Each
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/A

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #22: CR 950 E TO FORD ROAD

Existing Conditions
Length: 2,700 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each
Existing Effective Shoulder Width: 1 – 2 Feet
Existing Level of Service (AM peak / PM peak): LOS B/B

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 1 – 2 Feet
Resulting Level of Service (AM peak / PM peak): LOS B/B

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
CR 550 S

SEGMENT #23: CR 700 E TO AMOS DRIVE

Existing Conditions
Length: 3,750 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each
Existing Effective Shoulder Width: 2 Feet Grass
Existing Level of Service (AM peak / PM peak): LOS A/A

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 2 Feet Grass
Resulting Level of Service (AM peak / PM peak): LOS B/B

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #24: AMOS DRIVE TO CR 800 E

Existing Conditions
Length: 1,600 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each
Existing Effective Shoulder Width: 2 Feet Grass
Existing Level of Service (AM peak / PM peak): LOS A/A

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 2 Feet Grass
Resulting Level of Service (AM peak / PM peak): LOS A/B

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #25: CR 800 E TO CR 875 E

Existing Conditions
Length: 4,000 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10.5 Feet Each
Existing Effective Shoulder Width: 2 Feet Grass
Existing Level of Service (AM peak / PM peak): LOS A/A

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10.5 Feet Each
Recommended Effective Shoulder Width: 2 Feet Grass
Resulting Level of Service (AM peak / PM peak): LOS A/A

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

MULBERRY STREET

SEGMENT #26: FORD ROAD TO HAL SHARPE ROAD

Existing Conditions
Length: 2,300 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 11 Feet Each
Existing Effective Shoulder Width: 2 Feet
Existing Level of Service (AM peak / PM peak): LOS C/C

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 11 Feet Each
Recommended Effective Shoulder Width: 2 Feet
Resulting Level of Service (AM peak / PM peak): LOS D/D

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #27: HAL SHARPE ROAD TO TURKEY FOOT ROAD

Existing Conditions
Length: 2,600 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 11 Feet Each
Existing Effective Shoulder Width: 2 Feet
Existing Level of Service (AM peak / PM peak): LOS B/C

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 11 Feet Each
Recommended Effective Shoulder Width: 2 Feet
Resulting Level of Service (AM peak / PM peak): LOS D/D

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

CR 550 S / GREENFIELD ROAD

SEGMENT #28: CR 1100 E TO US 421/MICHIGAN ROAD

Existing Conditions
Length: 3,590 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each
Existing Effective Shoulder Width: 2 Feet
Existing Level of Service (AM peak / PM peak): LOS B/B

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 2 Feet
Resulting Level of Service (AM peak / PM peak): LOS B/B

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #29: US 421/MICHIGAN ROAD TO COUNTY LINE

Existing Conditions
Length: 1,850 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each
Existing Effective Shoulder Width: 2 Feet
Existing Level of Service (AM peak / PM peak): LOS A/B

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 2 Feet
Resulting Level of Service (AM peak / PM peak): LOS B/B

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

WHITESTOWN ROAD

SEGMENT #30: CR 950 E TO CR 975 E/FORD ROAD

Existing Conditions
Length: 1,600 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 11 Feet Each
Existing Effective Shoulder Width: 1 Foot
Existing Level of Service (AM peak / PM peak): LOS B/C

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 11 Feet Each
Recommended Effective Shoulder Width: 1 Foot
Resulting Level of Service (AM peak / PM peak): LOS D/E

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #31: CR 875 E TO CR 950 E

Existing Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>4,220 Feet</td>
</tr>
<tr>
<td>Existing # Lanes / Approximate Width</td>
<td>2 Lanes / 11 Feet Each</td>
</tr>
<tr>
<td>Existing Effective Shoulder Width</td>
<td>1 Foot</td>
</tr>
<tr>
<td>Existing Level of Service (AM peak / PM peak)</td>
<td>LOS B/B</td>
</tr>
</tbody>
</table>

Estimated Construction Cost to Mitigate

Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended # Lanes / Width</td>
<td>2 Lanes / 11 Feet Each</td>
</tr>
<tr>
<td>Recommended Effective Shoulder Width</td>
<td>1 Foot</td>
</tr>
<tr>
<td>Resulting Level of Service (AM peak / PM peak)</td>
<td>LOS D/D</td>
</tr>
</tbody>
</table>

Additional Estimated Construction Cost to Mitigate

Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #32: CR 800 E TO CR 875 E

Existing Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>4,365 Feet</td>
</tr>
<tr>
<td>Existing # Lanes / Approximate Width</td>
<td>2 Lanes / 10 Feet Each</td>
</tr>
<tr>
<td>Existing Effective Shoulder Width</td>
<td>1 Foot</td>
</tr>
<tr>
<td>Existing Level of Service (AM peak / PM peak)</td>
<td>LOS A/A</td>
</tr>
</tbody>
</table>

Estimated Construction Cost to Mitigate

Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended # Lanes / Width</td>
<td>2 Lanes / 10 Feet Each</td>
</tr>
<tr>
<td>Recommended Effective Shoulder Width</td>
<td>1 Foot</td>
</tr>
<tr>
<td>Resulting Level of Service (AM peak / PM peak)</td>
<td>LOS C/C</td>
</tr>
</tbody>
</table>

Additional Estimated Construction Cost to Mitigate

Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
126TH STREET

SEGMENT #33: US 421/MICHIGAN ROAD TO COUNTY LINE

Existing Conditions
Length: 2,865 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 9 Feet Each
Existing Effective Shoulder Width: 1 Foot
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $45,200

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 1 Foot
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

WILLOW ROAD / 131ST STREET

SEGMENT #34: US 421/MICHIGAN ROAD TO COUNTY LINE

Existing Conditions
Length: 4,285 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 14 Feet Each
Existing Effective Shoulder Width: Curb & Gutter
Existing Level of Service (AM peak / PM peak): LOS B/B
Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 14 Feet Each
Recommended Effective Shoulder Width: Curb & Gutter
Resulting Level of Service (AM peak / PM peak): LOS C/C
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
CR 400 S

SEGMENT #35: CR 800 E TO CR 875 E

Existing Conditions
Length: 4,000 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 9 Feet Each
Existing Effective Shoulder Width: 1 Foot
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $63,200

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 1 Foot
Resulting Level of Service (AM peak / PM peak): LOS B/B

Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #36: CR 875 E TO CR 950 E

Existing Conditions
Length: 4,000 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 9 – 11 Feet Each
Existing Effective Shoulder Width: 1 Foot
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 – 11 Feet Each
Recommended Effective Shoulder Width: 1 Foot
Resulting Level of Service (AM peak / PM peak): LOS A/A

Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
CR 375 S

SEGMENT #37: CR 950 E TO CR 975 E

Existing Conditions
Length: 1,350 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 9 Feet Each
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $10,700

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #38: CR 975 E TO HOLLIDAY ROAD

Existing Conditions
Length: 1,350 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 8 Feet Each
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $21,300

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
HOLLIDAY ROAD

SEGMENT #39: CR 975 E TO US 421/MICHIGAN ROAD

Existing Conditions
Length: 7,750 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 8 Feet Each – Gravel
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 8 Feet Each – Gravel
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

CR 300 S

SEGMENT #40: CR 800 E TO CR 875 E

Existing Conditions
Length: 4,050 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 11 Feet Each
Existing Effective Shoulder Width: 2 Feet
Existing Level of Service (AM peak / PM peak): LOS A/B
Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 11 Feet Each
Recommended Effective Shoulder Width: 2 Feet
Resulting Level of Service (AM peak / PM peak): LOS B/B
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #41: CR 875 E TO CR 975 E

Existing Conditions
Length: 5,400 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10.5 Feet Each
Existing Effective Shoulder Width: 2 Feet
Existing Level of Service (AM peak / PM peak): LOS B/B
Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10.5 Feet Each
Recommended Effective Shoulder Width: 2 Feet
Resulting Level of Service (AM peak / PM peak): LOS C/C
Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #42: CR 975 E TO US 421/MICHIGAN ROAD

Existing Conditions
Length: 5,450 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 11 Feet Each
Existing Effective Shoulder Width: 2 Feet
Existing Level of Service (AM peak / PM peak): LOS A/B
Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 11 Feet Each
Recommended Effective Shoulder Width: 2 Feet
Resulting Level of Service (AM peak / PM peak): LOS B/C
Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #43 US 421/MICHIGAN ROAD TO WILLOW SPRINGS DRIVE

Existing Conditions
Length: 5,550 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 12 Feet Each, 12 Foot Median
Existing Effective Shoulder Width: 6 Feet
Existing Level of Service (AM peak / PM peak): LOS C/C
Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 12 Feet Each, 12 Foot Median
Recommended Effective Shoulder Width: 6 Feet
Resulting Level of Service (AM peak / PM peak): LOS C/C
Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #44 WILLOW SPRINGS DRIVE TO COUNTY LINE ROAD

Existing Conditions
Length: 1,050 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 12 Feet Each
Existing Effective Shoulder Width: 6 Feet
Existing Level of Service (AM peak / PM peak): LOS C/C
Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 12 Feet Each
Recommended Effective Shoulder Width: 6 Feet
Resulting Level of Service (AM peak / PM peak): LOS C/C
Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
CR 200 S

SEGMENT #45: STUDY AREA BOUNDARY TO CR 825 E

Existing Conditions
Length: 1,550 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10.5 Feet Each
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10.5 Feet Each
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/A

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #46: CR 825 E TO CR 900 E

Existing Conditions
Length: 4,000 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each
Existing Effective Shoulder Width: 1 Foot
Existing Level of Service (AM peak / PM peak): LOS A/A

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 1 Foot
Resulting Level of Service (AM peak / PM peak): LOS A/A

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #47: CR 900 E TO CR 975 E

Existing Conditions
Length: 2,700 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each
Existing Effective Shoulder Width: 2 Feet
Existing Level of Service (AM peak / PM peak): LOS A/A

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 2 Feet
Resulting Level of Service (AM peak / PM peak): LOS B/B

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #48: CR 975 E TO US 421/MICHIGAN ROAD

Existing Conditions
Length: 4,850 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each
Existing Effective Shoulder Width: 2 Feet
Existing Level of Service (AM peak / PM peak): LOS A/A

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 2 Feet
Resulting Level of Service (AM peak / PM peak): LOS B/B

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #49: US 421/MICHIGAN ROAD TO CR 1100 E

Existing Conditions
Length: 3,250 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each
Existing Effective Shoulder Width: 1 Foot
Existing Level of Service (AM peak / PM peak): LOS A/A

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 1 Foot
Resulting Level of Service (AM peak / PM peak): LOS A/A

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #50: CR 1100 E TO COUNTY LINE ROAD

Existing Conditions
Length: 5,280 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each
Existing Effective Shoulder Width: 1 Foot
Existing Level of Service (AM peak / PM peak): LOS A/A

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 1 Foot
Resulting Level of Service (AM peak / PM peak): LOS B/C

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #51: CR 700 E TO CR 800 E

Existing Conditions
Length: 5,350 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 8 Feet Each – Gravel
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 8 Feet Each – Gravel
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #52: CR 800 E TO CR 825 E

Existing Conditions
Length: 1,320 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 8 Feet Each – Gravel
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 8 Feet Each – Gravel
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #53: CR 825 E TO CR 850 E

Existing Conditions
Length: 1,320 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 8 Feet Each – Gravel
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 8 Feet Each – Gravel
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #54: CR 800 E TO CR 900 E

Existing Conditions
Length: 5,280 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 8 Feet Each – Gravel
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 8 Feet Each – Gravel
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
CR 100 N

SEGMENT #55: CR 600 E TO CR 650 E

Existing Conditions
Length: 2,800 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #56: CR 650 E TO CR 700 E

Existing Conditions
Length: 2,640 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #57: CR 700 E TO CR 750 E

Existing Conditions
Length: 2,640 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/A

Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #58: CR 750 E TO CR 800 E

Existing Conditions
Length: 2,640 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/A

Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #59: CR 800 E TO US 421/MICHIGAN ROAD

Existing Conditions
- **Length:** 7,000 Feet
- **Existing # Lanes / Approximate Width:** 2 Lanes / 9.5 Feet Each
- **Existing Effective Shoulder Width:** None
- **Existing Level of Service (AM peak / PM peak):** LOS A/A
- **Required Minimum Pavement Width:** 2 Lanes / 10 Feet Each
- **Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost):** $27,700

Projected 10-Year Conditions
- **Recommended # Lanes / Width:** 2 Lanes / 10 Feet Each
- **Recommended Effective Shoulder Width:** None
- **Resulting Level of Service (AM peak / PM peak):** LOS A/A
- **Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost):** $0

SEGMENT #60: US 421/MICHIGAN ROAD TO CR 1000 E

Existing Conditions
- **Length:** 3,600 Feet
- **Existing # Lanes / Approximate Width:** 2 Lanes / 9 Feet Each – Gravel
- **Existing Effective Shoulder Width:** None
- **Existing Level of Service (AM peak / PM peak):** LOS A/A
- **Required Minimum Pavement Width:** 2 Lanes / 10 Feet Each
- **Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost):** $0

Projected 10-Year Conditions
- **Recommended # Lanes / Width:** 2 Lanes / 9 Feet Each – Gravel
- **Recommended Effective Shoulder Width:** None
- **Resulting Level of Service (AM peak / PM peak):** LOS A/A
- **Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost):** $0
SEGMENT #61: CR 1000 E TO CR 1100 E

Existing Conditions
Length: 5,280 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each – Gravel
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each – Gravel
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #62: CR 1100 E TO COUNTY LINE ROAD

Existing Conditions
Length: 5,280 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each – Gravel
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each – Gravel
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
CR 150 N

SEGMENT #63: CR 650 E TO CR 675 E

Existing Conditions
Length: 1,500 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 8.5 Feet Each – Gravel
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 8.5 Feet Each – Gravel
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

CR 200 N

SEGMENT #64: CR 675 E TO CR 750 E

Existing Conditions
Length: 3,750 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 8 Feet Each – Gravel
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 8 Feet Each – Gravel
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #65: CR 750 E TO CR 800 E

Existing Conditions
Length: 2,640 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 8 Feet Each – Gravel
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 8 Feet Each – Gravel
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #66: CR 800 E TO US 421/MICHIGAN ROAD

Existing Conditions
Length: 5,100 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 9 Feet Each – Gravel
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 9 Feet Each – Gravel
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #67: US 421/MICHIGAN ROAD TO CR 1000 E

Existing Conditions
Length: 5,550 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #68: CR 1000 E TO CR 1100 E

Existing Conditions
Length: 5,500 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #69: CR 1100 E TO COUNTY LINE ROAD

Existing Conditions
Length: 5,280 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 8.5 Feet Each
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $62,500

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

CR 600 E

SEGMENT #70: SR 32 TO CR 100 N

Existing Conditions
Length: 5,280 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 8 Feet Each – Gravel
Existing Effective Shoulder Width: 2 Feet Grass
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 8 Feet Each – Gravel
Recommended Effective Shoulder Width: 2 Feet Grass
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #71: CR 100 N TO CR 250 N

Existing Conditions
Length: 8,000 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 9 Feet Each
Existing Effective Shoulder Width: 2 Feet Grass
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $104,200

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 2 Feet Grass
Resulting Level of Service (AM peak / PM peak): LOS A/A

Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

CR 700 E

SEGMENT #72: OAK STREET TO MORTON ROAD

Existing Conditions
Length: 1,580 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 12 Feet Each, Two-way left-turn lane / 17 feet
Existing Effective Shoulder Width: Curb & Gutter
Existing Level of Service (AM peak / PM peak): LOS C/B
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 12 Feet Each, Two-way left-turn lane / 17 feet
Recommended Effective Shoulder Width: Curb & Gutter
Resulting Level of Service (AM peak / PM peak): LOS C/C

Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #73: MORTON ROAD TO CR 550 S

Existing Conditions
Length: 2,640 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 9 Feet Each
Existing Effective Shoulder Width: 2 Feet Grass/Gravel
Existing Level of Service (AM peak / PM peak): LOS C/B
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $20,900

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 2 Feet Grass/Gravel
Resulting Level of Service (AM peak / PM peak): LOS C/C

Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #74: CR 550 S TO CR 525 S

Existing Conditions
Length: 1,300 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 9 Feet Each
Existing Effective Shoulder Width: 2 Feet Grass
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $10,300

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 2 Feet Grass
Resulting Level of Service (AM peak / PM peak): LOS A/B

Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #75: CR 100 S TO SR 32

Existing Conditions
Length: 5,280 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 8 Feet Each – Gravel
Existing Effective Shoulder Width: 2 Feet Grass
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 8 Feet Each – Gravel
Recommended Effective Shoulder Width: 2 Feet Grass
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

CR 750 E

SEGMENT #76: CR 100 N TO CR 200 N

Existing Conditions
Length: 5,280 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 8 Feet Each
Existing Effective Shoulder Width: 2 Feet Grass
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $83,300

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 2 Feet Grass
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
CR 775 E / KISSEL ROAD

SEGMENT #77: 96TH STREET TO I-865

Existing Conditions
Length: 2,640 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 9 Feet Each
Existing Effective Shoulder Width: 2 Feet Grass
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $20,900

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 2 Feet Grass
Resulting Level of Service (AM peak / PM peak): LOS A/A

Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #78: I-865 TO HUNT CLUB ROAD

Existing Conditions
Length: 2,640 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each
Existing Effective Shoulder Width: 2 Feet Grass
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 2 Feet Grass
Resulting Level of Service (AM peak / PM peak): LOS A/A

Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #79: HUNT CLUB ROAD TO OAK STREET

Existing Conditions
Length: 4,600 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 9 Feet Each
Existing Effective Shoulder Width: 2 Feet Grass
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $36,300

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 2 Feet Grass
Resulting Level of Service (AM peak / PM peak): LOS A/B

Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

CR 800 E

SEGMENT #80: OAK STREET TO CR 550 S

Existing Conditions
Length: 4,450 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each
Existing Effective Shoulder Width: 1 Foot Grass
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 1 Foot
Resulting Level of Service (AM peak / PM peak): LOS B/A

Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #81: CR 550 S TO WHITESTOWN ROAD

Existing Conditions
- **Length:** 3,500 Feet
- **Existing # Lanes / Approximate Width:** 2 Lanes / 9 Feet Each
- **Existing Effective Shoulder Width:** 2 Feet Grass
- **Existing Level of Service (AM peak / PM peak):** LOS A/A
- **Required Minimum Pavement Width:** 2 Lanes / 10 Feet Each
- **Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost):** $27,700

Projected 10-Year Conditions
- **Recommended # Lanes / Width:** 2 Lanes / 10 Feet Each
- **Recommended Effective Shoulder Width:** 2 Feet Grass
- **Resulting Level of Service (AM peak / PM peak):** LOS B/B
- **Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost):** $0

SEGMENT #82: WHITESTOWN ROAD TO CR 400 S

Existing Conditions
- **Length:** 4,400 Feet
- **Existing # Lanes / Approximate Width:** 2 Lanes / 9 Feet Each
- **Existing Effective Shoulder Width:** 2 Feet Grass
- **Existing Level of Service (AM peak / PM peak):** LOS A/A
- **Required Minimum Pavement Width:** 2 Lanes / 10 Feet Each
- **Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost):** $34,800

Projected 10-Year Conditions
- **Recommended # Lanes / Width:** 2 Lanes / 10 Feet Each
- **Recommended Effective Shoulder Width:** 2 Feet Grass
- **Resulting Level of Service (AM peak / PM peak):** LOS A/A
- **Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost):** $0
SEGMENT #83: CR 400 S TO CR 300 S

Existing Conditions
Length: 5,280 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each
Existing Effective Shoulder Width: 1 Foot Grass/Stone
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 1 Foot Grass/Stone
Resulting Level of Service (AM peak / PM peak): LOS A/A

Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #84: CR 100 S TO CR 50 S

Existing Conditions
Length: 2,640 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 8 Feet Each – Gravel
Existing Effective Shoulder Width: 2 Feet Grass
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 8 Feet Each – Gravel
Recommended Effective Shoulder Width: 2 Feet Grass
Resulting Level of Service (AM peak / PM peak): LOS A/A

Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #85: CR 50 S TO SR 32

Existing Conditions
Length: 2,350 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 8 Feet Each – Gravel
Existing Effective Shoulder Width: 2 Feet Grass
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 8 Feet Each – Gravel
Recommended Effective Shoulder Width: 2 Feet Grass
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #86: SR 32 TO CR 100 N

Existing Conditions
Length: 5,280 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 8 Feet Each
Existing Effective Shoulder Width: 2 Feet Grass
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $83,300

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 2 Feet Grass
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #87: CR 100 N TO CR 200 N

Existing Conditions
Length: 5,280 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 8 Feet Each
Existing Effective Shoulder Width: 2 Feet Grass
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $83,300

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 2 Feet Grass
Resulting Level of Service (AM peak / PM peak): LOS A/A

Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

CR 825 E

SEGMENT #88: CR 200 S TO CR 100 S

Existing Conditions
Length: 5,280 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 8 Feet Each – Gravel
Existing Effective Shoulder Width: 2 Feet Grass
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 8 Feet Each – Gravel
Recommended Effective Shoulder Width: 2 Feet Grass
Resulting Level of Service (AM peak / PM peak): LOS A/A

Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
CR 850 E / COOPER ROAD

SEGMENT #89: 96TH STREET TO HUNT CLUB ROAD

Existing Conditions
Length: 5,280 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each
Existing Effective Shoulder Width: 2 Feet Grass
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 2 Feet Grass
Resulting Level of Service (AM peak / PM peak): LOS A/A

Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #90: HUNT CLUB ROAD TO OAK STREET

Existing Conditions
Length: 4,000 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each
Existing Effective Shoulder Width: 2 Feet Grass
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 2 Feet Grass
Resulting Level of Service (AM peak / PM peak): LOS A/A

Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
CR 875 E

SEGMENT #91: CR 575 S TO WHITESTOWN ROAD

Existing Conditions
Length: 2,500 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 12 Feet Each
Existing Effective Shoulder Width: 2 Feet Grass
Existing Level of Service (AM peak / PM peak): LOS A/B
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 12 Feet Each
Recommended Effective Shoulder Width: 2 Feet Grass
Resulting Level of Service (AM peak / PM peak): LOS B/C
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #92: WHITESTOWN ROAD TO CR 400 S

Existing Conditions
Length: 5,800 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 11 Feet Each
Existing Effective Shoulder Width: 2 Feet Grass
Existing Level of Service (AM peak / PM peak): LOS B/B
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 11 Feet Each
Recommended Effective Shoulder Width: 2 Feet Grass
Resulting Level of Service (AM peak / PM peak): LOS C/C
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #93: CR 400 S TO CR 350 S

Existing Conditions
- **Length:** 2,640 Feet
- **Existing # Lanes / Approximate Width:** 2 Lanes / 10 Feet Each
- **Existing Effective Shoulder Width:** 1 Foot Grass
- **Existing Level of Service (AM peak / PM peak):** LOS A/A
- **Required Minimum Pavement Width:** 2 Lanes / 10 Feet Each

Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost):
- **$0**

Projected 10-Year Conditions
- **Recommended # Lanes / Width:** 2 Lanes / 10 Feet Each
- **Recommended Effective Shoulder Width:** 1 Foot Grass
- **Resulting Level of Service (AM peak / PM peak):** LOS C/C

Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost):
- **$0**

SEGMENT #94: CR 350 S TO CR 300 S

Existing Conditions
- **Length:** 2,640 Feet
- **Existing # Lanes / Approximate Width:** 2 Lanes / 10 Feet Each
- **Existing Effective Shoulder Width:** 1 Foot Grass
- **Existing Level of Service (AM peak / PM peak):** LOS A/A
- **Required Minimum Pavement Width:** 2 Lanes / 10 Feet Each

Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost):
- **$0**

Projected 10-Year Conditions
- **Recommended # Lanes / Width:** 2 Lanes / 10 Feet Each
- **Recommended Effective Shoulder Width:** 1 Foot Grass
- **Resulting Level of Service (AM peak / PM peak):** LOS B/C

Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost):
- **$0**
CR 900 E

SEGMENT #95: CR 230 S TO CR 200 S

Existing Conditions
Length: 2,640 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10.5 Feet Each
Existing Effective Shoulder Width: NB - 2 Feet Paved
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10.5 Feet Each
Recommended Effective Shoulder Width: NB - 2 Feet Paved
Resulting Level of Service (AM peak / PM peak): LOS A/B
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #96: CR 200 S TO CR 125 S

Existing Conditions
Length: 3,900 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10.5 Feet Each
Existing Effective Shoulder Width: SB - 2 Feet Grass
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10.5 Feet Each
Recommended Effective Shoulder Width: NB - 2 Feet Paved
Resulting Level of Service (AM peak / PM peak): LOS A/B
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #97: CR 125 S TO CR 50 S

Existing Conditions
Length: 4,000 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10.5 Feet Each
Existing Effective Shoulder Width: 2 Feet Grass
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10.5 Feet Each
Recommended Effective Shoulder Width: 2 Feet Grass
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #98: CR 50 S TO SR 32

Existing Conditions
Length: 2,400 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10.5 Feet Each
Existing Effective Shoulder Width: NB – 1 Foot Grass
SB – 2 Feet Grass
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10.5 Feet Each
Recommended Effective Shoulder Width: NB – 1 Foot Grass
SB – 2 Feet Grass
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
CR 950 E / SHEETS ROAD

SEGMENT #99: OAK STREET TO CR 600 S

Existing Conditions
Length: 3,000 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each
Existing Effective Shoulder Width: 1 Foot Grass
Existing Level of Service (AM peak / PM peak): LOS B/B

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 1 Foot Grass
Resulting Level of Service (AM peak / PM peak): LOS B/B

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #100: CR 600 S TO WHITESTOWN ROAD

Existing Conditions
Length: 2,350 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each
Existing Effective Shoulder Width: 2 Feet Grass
Existing Level of Service (AM peak / PM peak): LOS B/B

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 2 Feet Grass
Resulting Level of Service (AM peak / PM peak): LOS B/B

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
CR 975 E

SEGMENT #101: OAK RIDGE DRIVE TO CR 375 S/HOLLIDAY ROAD

Existing Conditions
- **Length:** 8,350 Feet
- **Existing # Lanes / Approximate Width:** 2 Lanes / 11 Feet Each
- **Existing Effective Shoulder Width:**
 - NB – 2 Feet – Gravel
 - SB – 3 Feet – Gravel
- **Existing Level of Service (AM peak / PM peak):** LOS B/B

Estimated Construction Cost to Mitigate
- **Existing Traffic Volumes (Today’s Cost):** $0

Projected 10-Year Conditions
- **Recommended # Lanes / Width:** 2 Lanes / 11 Feet Each
- **Recommended Effective Shoulder Width:**
 - NB – 2 Feet – Gravel
 - SB – 3 Feet – Gravel
- **Resulting Level of Service (AM peak / PM peak):** LOS B/C

Additional Estimated Construction Cost to Mitigate
- **Proj. 10-Yr. Traffic Volumes (10-Year Cost):** $0

SEGMENT #102: CR 375 S/HOLLIDAY ROAD TO CR 300 S

Existing Conditions
- **Length:** 4,000 Feet
- **Existing # Lanes / Approximate Width:** 2 Lanes / 11 Feet Each
- **Existing Effective Shoulder Width:** 2 Feet – Grass/Gravel
- **Existing Level of Service (AM peak / PM peak):** LOS B/B

Estimated Construction Cost to Mitigate
- **Existing Traffic Volumes (Today’s Cost):** $0

Projected 10-Year Conditions
- **Recommended # Lanes / Width:** 2 Lanes / 11 Feet Each
- **Recommended Effective Shoulder Width:** 2 Feet – Grass/Gravel
- **Resulting Level of Service (AM peak / PM peak):** LOS B/B

Additional Estimated Construction Cost to Mitigate
- **Proj. 10-Yr. Traffic Volumes (10-Year Cost):** $0
SEGMENT #103: CR 300 S TO CR 200 S

Existing Conditions
Length: 5,600 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 11 Feet Each
Existing Effective Shoulder Width: 2 Feet Grass
Existing Level of Service (AM peak / PM peak): LOS A/A

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 11 Feet Each
Recommended Effective Shoulder Width: 2 Feet Grass
Resulting Level of Service (AM peak / PM peak): LOS A/A

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

PLEASANT VIEW ROAD

SEGMENT #104: CR 200 S TO CR 100 S

Existing Conditions
Length: 5,280 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 8 Feet Each – Gravel
Existing Effective Shoulder Width: 2 Feet Grass
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 8 Feet Each – Gravel
Recommended Effective Shoulder Width: 2 Feet Grass
Resulting Level of Service (AM peak / PM peak): LOS A/A

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
CR 1000 E / FORD ROAD

SEGMENT #105: 96TH STREET TO HUNT CLUB ROAD

Existing Conditions
Length: 5,280 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10.5 Feet Each
Existing Effective Shoulder Width: 3 Feet
Existing Level of Service (AM peak / PM peak): LOS C/D

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10.5 Feet Each
Recommended Effective Shoulder Width: 3 Feet
Resulting Level of Service (AM peak / PM peak): LOS D/D

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #106: HUNT CLUB ROAD TO CONTINENTAL DRIVE/SALT AVENUE

Existing Conditions
Length: 1,320 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each
Existing Effective Shoulder Width: 2 Feet
Existing Level of Service (AM peak / PM peak): LOS D/D

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 2 Feet
Resulting Level of Service (AM peak / PM peak): LOS D/D

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #107: CONTINENTAL DRIVE/SALT AVENUE TO OAK STREET

Existing Conditions
Length: 2,600 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 12 Feet Each
Existing Effective Shoulder Width: 2 Feet
Existing Level of Service (AM peak / PM peak): LOS D/D

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 12 Feet Each
Recommended Effective Shoulder Width: 2 Feet
Resulting Level of Service (AM peak / PM peak): LOS D/D

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #108: OAK STREET TO CR 600 S

Existing Conditions
Length: 3,000 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 12 Feet Each
Existing Effective Shoulder Width: 2 Feet
Existing Level of Service (AM peak / PM peak): LOS D/D

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 12 Feet Each
Recommended Effective Shoulder Width: 2 Feet
Resulting Level of Service (AM peak / PM peak): LOS D/D

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #109: CR 600 S TO WHITESTOWN ROAD / MULBERRY STREET

Existing Conditions
Length: 2,500 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 12 Feet Each
Existing Effective Shoulder Width: 3 Feet – Grass
Existing Level of Service (AM peak / PM peak): LOS C/C

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 12 Feet Each
Recommended Effective Shoulder Width: 3 Feet – Grass
Resulting Level of Service (AM peak / PM peak): LOS C/D

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #110: SR 32 TO CR 100 N

Existing Conditions
Length: 5,400 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 9.5 Feet Each
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $21,300

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/A

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #111: CR 100 N TO CR 200 N

Existing Conditions
Length: 5,280 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 9.5 Feet Each
Existing Effective Shoulder Width: None
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $20,900

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: None
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

MULBERRY STREET

SEGMENT #112: ASH STREET TO BLOOR LANE

Existing Conditions
Length: 800 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 11 Feet Each
Existing Effective Shoulder Width: NB – Curb & Gutter
Existing Level of Service (AM peak / PM peak): LOS C/B
Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 11 Feet Each
Recommended Effective Shoulder Width: NB – Curb & Gutter
Resulting Level of Service (AM peak / PM peak): LOS D/D
Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #113: BLOOR LANE TO TURKEY FOOT ROAD

Existing Conditions
Length: 1,240 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 11 Feet Each
Existing Effective Shoulder Width: 3 Feet – Grass
Existing Level of Service (AM peak / PM peak): LOS B/B

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 11 Feet Each
Recommended Effective Shoulder Width: 3 Feet – Grass
Resulting Level of Service (AM peak / PM peak): LOS D/D

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

TURKEY FOOT ROAD

SEGMENT #114: MULBERRY STREET TO OAK RIDGE DRIVE

Existing Conditions
Length: 4,000 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 9 Feet Each
Existing Effective Shoulder Width: 3 Feet – Grass
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $36,900

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 3 Feet – Grass
Resulting Level of Service (AM peak / PM peak): LOS B/B

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
ZIONSVILLE ROAD

SEGMENT #115: 96TH STREET TO I-865

Existing Conditions

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>800 Feet</td>
</tr>
<tr>
<td>Existing # Lanes / Approximate Width</td>
<td>2 Lanes / 11.5 Feet Each, Turn Lanes / 11 Feet Each</td>
</tr>
<tr>
<td>Existing Effective Shoulder Width</td>
<td>6 Feet</td>
</tr>
<tr>
<td>Existing Level of Service (AM peak / PM peak)</td>
<td>LOS D/D</td>
</tr>
</tbody>
</table>

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended # Lanes / Width</td>
<td>2 Lanes / 11.5 Feet Each, Turn Lanes / 11 Feet Each</td>
</tr>
<tr>
<td>Recommended Effective Shoulder Width</td>
<td>6 Feet</td>
</tr>
<tr>
<td>Resulting Level of Service (AM peak / PM peak)</td>
<td>LOS E/F</td>
</tr>
</tbody>
</table>

NOTE:

In order to maintain the current character of the roadway system and surrounding neighborhood, the Town has determined that this roadway would remain “as-is” under all scenarios. Therefore, no cost (Today’s or 10-Year) were assigned to this segment.

Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #116: I-865 TO 106TH STREET

Existing Conditions

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>6,100 Feet</td>
</tr>
<tr>
<td>Existing # Lanes / Approximate Width</td>
<td>2 Lanes / 9.5 Feet Each</td>
</tr>
<tr>
<td>Existing Effective Shoulder Width</td>
<td>2 Feet</td>
</tr>
<tr>
<td>Existing Level of Service (AM peak / PM peak):</td>
<td>LOS D/D</td>
</tr>
<tr>
<td>Required Minimum Pavement Width:</td>
<td>2 Lanes / 10 Feet Each</td>
</tr>
</tbody>
</table>

Estimated Construction Cost to Improve Roadway Width to Minimum Width (Today’s Cost): $181,600

Projected 10-Year Conditions

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended # Lanes / Width:</td>
<td>2 Lanes / 10 Feet Each</td>
</tr>
<tr>
<td>Recommended Effective Shoulder Width</td>
<td>2 Feet</td>
</tr>
<tr>
<td>Resulting Level of Service (AM peak / PM peak):</td>
<td>LOS E/F</td>
</tr>
</tbody>
</table>

NOTE:
In order to maintain the current character of the roadway system and surrounding neighborhood, the Town has determined that this roadway would remain “as-is” under all scenarios. Therefore, no cost (Today’s or 10-Year) were assigned to this segment.

Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
MAIN STREET/ZIONSVILLE ROAD

SEGMENT #117: 106TH STREET TO SYCAMORE STREET

Existing Conditions
Length: 1,500 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 12 Feet Each, 14 Foot TWLTL
Existing Effective Shoulder Width: Curb & Gutter
Existing Level of Service (AM peak / PM peak): LOS C/D
Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 12 Feet Each, 14 Foot TWLTL
Recommended Effective Shoulder Width: Curb & Gutter
Resulting Level of Service (AM peak / PM peak): LOS F/F

NOTE:
In order to maintain the current character of the roadway system and surrounding neighborhood, the Town has determined that this roadway would remain “as-is” under all scenarios. Therefore, no cost (Today’s or 10-Year) were assigned to this segment.

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #117A: SYCAMORE STREET TO OAK STREET

Existing Conditions
Length: 950 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 12 Feet Each
Existing Effective Shoulder Width: Curb & Gutter
Existing Level of Service (AM peak / PM peak): LOS C/D

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 12 Feet Each
Recommended Effective Shoulder Width: Curb & Gutter
Resulting Level of Service (AM peak / PM peak): LOS E/F

NOTE:
In order to maintain the current character of the roadway system and surrounding neighborhood, the Town has determined that this roadway would remain “as-is” under all scenarios. Therefore, no cost (Today’s or 10-Year) were assigned to this segment.

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

CR 1100 E

SEGMENT #118: CR 550 S TO WILLOW ROAD

Existing Conditions
Length: 4,600 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 10 Feet Each
Existing Effective Shoulder Width: 3 Feet – Grass
Existing Level of Service (AM peak / PM peak): LOS A/A

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $0

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 3 Feet – Grass
Resulting Level of Service (AM peak / PM peak): LOS B/B

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #119: CR 200 S TO SR 32

Existing Conditions
Length: 10,560 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 9 Feet Each
Existing Effective Shoulder Width: 2 Feet
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $83,300

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 2 Feet – Grass
Resulting Level of Service (AM peak / PM peak): LOS B/B
Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #120: SR 32 TO END OF ASPHALT (2,000 FEET SOUTH OF CR 100 N)

Existing Conditions
Length: 2,000 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 9 Feet Each
Existing Effective Shoulder Width: 2 Feet – Grass
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Mitigate
Existing Traffic Volumes (Today’s Cost): $31,100

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 2 Feet – Grass
Resulting Level of Service (AM peak / PM peak): LOS A/A
Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
Segment #121: End of Asphalt (2,000 Feet South of CR 100 N) to CR 100 N

Existing Conditions
- **Length:** 2,000 Feet
- **Existing # Lanes / Approximate Width:** 2 Lanes / 8 Feet Each – Gravel
- **Existing Effective Shoulder Width:** 2 Feet – Grass
- **Existing Level of Service (AM peak / PM peak):** LOS A/A
- **Required Minimum Pavement Width:** 2 Lanes / 10 Feet Each
- **Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost):** $0

Projected 10-Year Conditions
- **Recommended # Lanes / Width:** 2 Lanes / 8 Feet Each – Gravel
- **Recommended Effective Shoulder Width:** 2 Feet – Grass
- **Resulting Level of Service (AM peak / PM peak):** LOS A/A
- **Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost):** $0

Segment #122: CR 100 N to CR 200 N

Existing Conditions
- **Length:** 5,280 Feet
- **Existing # Lanes / Approximate Width:** 2 Lanes / 8 Feet Each – Gravel
- **Existing Effective Shoulder Width:** 1 Foot
- **Existing Level of Service (AM peak / PM peak):** LOS A/A
- **Required Minimum Pavement Width:** 2 Lanes / 10 Feet Each
- **Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost):** $0

Projected 10-Year Conditions
- **Recommended # Lanes / Width:** 2 Lanes / 8 Feet Each – Gravel
- **Recommended Effective Shoulder Width:** 1 Foot
- **Resulting Level of Service (AM peak / PM peak):** LOS A/A
- **Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost):** $0
COUNTY LINE ROAD

SEGMENT #123: CR 300 S/146TH STREET TO CR 200 S/156TH STREET

Existing Conditions
Length: 5,280 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 9 Feet Each
Existing Effective Shoulder Width: 2 Feet – Grass
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $41,700

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 2 Feet – Grass
Resulting Level of Service (AM peak / PM peak): LOS B/B

Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #124: CR 200 S/156TH STREET TO 166TH STREET

Existing Conditions
Length: 5,280 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 9 Feet Each
Existing Effective Shoulder Width: 2 Feet – Grass
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Estimated Construction Cost to Mitigate Existing Traffic Volumes (Today’s Cost): $41,700

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 2 Feet – Grass
Resulting Level of Service (AM peak / PM peak): LOS C/B

Additional Estimated Construction Cost to Mitigate Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #125: 166TH STREET TO SR 32

Existing Conditions
Length: 5,280 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 9 Feet Each
Existing Effective Shoulder Width: 2 Feet – Grass
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Existing Traffic Volumes (Today’s Cost): $41,700

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 2 Feet – Grass
Resulting Level of Service (AM peak / PM peak): LOS A/A

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0

SEGMENT #126: SR 32 TO CR 100 N

Existing Conditions
Length: 5,280 Feet
Existing # Lanes / Approximate Width: 2 Lanes / 9 Feet Each
Existing Effective Shoulder Width: 2 Feet – Grass
Existing Level of Service (AM peak / PM peak): LOS A/A
Required Minimum Pavement Width: 2 Lanes / 10 Feet Each

Existing Traffic Volumes (Today’s Cost): $41,700

Projected 10-Year Conditions
Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
Recommended Effective Shoulder Width: 2 Feet – Grass
Resulting Level of Service (AM peak / PM peak): LOS A/B

Additional Estimated Construction Cost to Mitigate
Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
SEGMENT #127: CR 100 N TO CR 200 N

Existing Conditions
- Length: 5,280 Feet
- Existing # Lanes / Approximate Width: 2 Lanes / 9 Feet Each
- Existing Effective Shoulder Width: 2 Feet – Grass
- Existing Level of Service (AM peak / PM peak): LOS A/A
- Required Minimum Pavement Width: 2 Lanes / 10 Feet Each
- Estimated Construction Cost to Mitigate
 - Existing Traffic Volumes (Today’s Cost): $41,700

Projected 10-Year Conditions
- Recommended # Lanes / Width: 2 Lanes / 10 Feet Each
- Recommended Effective Shoulder Width: 2 Feet – Grass
- Resulting Level of Service (AM peak / PM peak): LOS A/A
- Additional Estimated Construction Cost to Mitigate
 - Proj. 10-Yr. Traffic Volumes (10-Year Cost): $0
PROPOSED SEGMENTS

Proposed East/West Connector Road

SEGMENT #128: FROM ZIONSVILLE RD TO MAYFLOWER PARK DR

Existing Conditions
Existing # Lanes / Approximate Width: Proposed Roadway – No Existing Conditions
Existing Effective Shoulder Width: Proposed Roadway – No Existing Conditions
Existing Level of Service (AM peak / PM peak):

Projected 10-Year Conditions
Length: 5,200 Feet
Recommended # Lanes / Width: 2 Lanes / 12 Feet Each
Recommended Effective Shoulder Width: Curb & Gutter
Resulting Level of Service (AM peak / PM peak): LOS A/A

Total Estimated Cost of Roadway Construction $1,274,000

NOTE:
The Total Cost of this roadway segment will be divided evenly between “Today’s Cost” and “10-Year Cost”. Therefore, the cost breakdown is as follows:

Today’s Cost: $637,000
10-Year Cost: $637,000
Bennett Parkway Extension

SEGMENT #129A: PROPOSED E/W CONNECTOR TO 96TH STREET

Existing Conditions
Existing # Lanes / Approximate Width: Proposed Roadway – No Existing Conditions
Existing Effective Shoulder Width:
Existing Level of Service (AM peak / PM peak):

Projected 10-Year Conditions
Length: 2,650 Feet
Recommended # Lanes / Width: 2 Lanes / 12 Feet Each
Recommended Effective Shoulder Width: Curb & Gutter
Resulting Level of Service (AM peak / PM peak): LOS A/A

Total Estimated Cost of Roadway Construction $1,440,000

NOTE:
The Total Cost of this roadway segment will be divided evenly between “Today’s Cost” and “10-Year Cost”. Therefore, the cost breakdown is as follows:

Today’s Cost: $720,000
10-Year Cost: $720,000
SEGMENT #129B: 106TH STREET TO PROPOSED E/W CONNECTOR

Existing Conditions

Proposed Roadway – No Existing Conditions

Existing # Lanes / Approximate Width:
Existing Effective Shoulder Width:
Existing Level of Service (AM peak / PM peak):

Projected 10-Year Conditions

Length: 2,650 Feet
Recommended # Lanes / Width: 2 Lanes / 12 Feet Each
Recommended Effective Shoulder Width: Curb & Gutter
Resulting Level of Service (AM peak / PM peak): LOS A/A

Total Estimated Cost of Roadway Construction $1,440,000

NOTE:
The Total Cost of this roadway segment will be divided evenly between “Today’s Cost” and “10-Year Cost”. The cost under “Today’s Cost” for this roadway cost is covered by Bonds issued by the Zionsville Redevelopment Commission in 2012. Therefore, the cost breakdown is as follows:

Today’s Cost: $720,000 (Covered by bonds issued by the Zionsville Redevelopment Commission in 2012. Therefore net cost is $0)

10-Year Cost: $720,000
Cooper Road/CR 850 East Extension

SEGMENT #130: CR 575 TO OAK STREET

Existing Conditions
Existing # Lanes / Approximate Width:
Existing Effective Shoulder Width:
Existing Level of Service (AM peak / PM peak):

Proposed Roadway – No Existing Conditions

Projected 10-Year Conditions
Length: 3,860 Feet
Recommended # Lanes / Width: 2 Lanes / 12 Feet Each
Recommended Effective Shoulder Width: Curb & 4 Feet
Resulting Level of Service (AM peak / PM peak): LOS A/A

Total Estimated Cost of Roadway Construction $945,700

NOTE:
The cost of this roadway will be included in the impact fee when this roadway is approved as part of the thoroughfare plan.